BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 27218828)

  • 1. Transport properties through graphene grain boundaries: strain effects versus lattice symmetry.
    Hung Nguyen V; Hoang TX; Dollfus P; Charlier JC
    Nanoscale; 2016 Jun; 8(22):11658-73. PubMed ID: 27218828
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Strain-induced conduction gap in vertical devices made of misoriented graphene layers.
    Nguyen VH; Nguyen HV; Saint-Martin J; Dollfus P
    Nanotechnology; 2015 Mar; 26(11):115201. PubMed ID: 25709081
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polycrystallinity and stacking in CVD graphene.
    Tsen AW; Brown L; Havener RW; Park J
    Acc Chem Res; 2013 Oct; 46(10):2286-96. PubMed ID: 23135386
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Strain-induced conductance modulation in graphene grain boundary.
    Kumar SB; Guo J
    Nano Lett; 2012 Mar; 12(3):1362-6. PubMed ID: 22324382
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Scattering Theory of Graphene Grain Boundaries.
    Romeo F; Di Bartolomeo A
    Materials (Basel); 2018 Sep; 11(9):. PubMed ID: 30205555
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electronic transport in polycrystalline graphene.
    Yazyev OV; Louie SG
    Nat Mater; 2010 Oct; 9(10):806-9. PubMed ID: 20729847
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electronic and plasmonic phenomena at graphene grain boundaries.
    Fei Z; Rodin AS; Gannett W; Dai S; Regan W; Wagner M; Liu MK; McLeod AS; Dominguez G; Thiemens M; Castro Neto AH; Keilmann F; Zettl A; Hillenbrand R; Fogler MM; Basov DN
    Nat Nanotechnol; 2013 Nov; 8(11):821-5. PubMed ID: 24122082
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conserved atomic bonding sequences and strain organization of graphene grain boundaries.
    Rasool HI; Ophus C; Zhang Z; Crommie MF; Yakobson BI; Zettl A
    Nano Lett; 2014 Dec; 14(12):7057-63. PubMed ID: 25375022
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatially resolved mapping of electrical conductivity across individual domain (grain) boundaries in graphene.
    Clark KW; Zhang XG; Vlassiouk IV; He G; Feenstra RM; Li AP
    ACS Nano; 2013 Sep; 7(9):7956-66. PubMed ID: 23952068
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Charge transport in polycrystalline graphene: challenges and opportunities.
    Cummings AW; Duong DL; Nguyen VL; Van Tuan D; Kotakoski J; Barrios Vargas JE; Lee YH; Roche S
    Adv Mater; 2014 Aug; 26(30):5079-94. PubMed ID: 24903153
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Periodic grain boundaries formed by thermal reconstruction of polycrystalline graphene film.
    Yang B; Xu H; Lu J; Loh KP
    J Am Chem Soc; 2014 Aug; 136(34):12041-6. PubMed ID: 25083942
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemical sensing with switchable transport channels in graphene grain boundaries.
    Yasaei P; Kumar B; Hantehzadeh R; Kayyalha M; Baskin A; Repnin N; Wang C; Klie RF; Chen YP; Král P; Salehi-Khojin A
    Nat Commun; 2014 Sep; 5():4911. PubMed ID: 25241799
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anomalous twisting strength of tilt grain boundaries in armchair graphene nanoribbons.
    Liu X; Wang F; Wu H
    Phys Chem Chem Phys; 2015 Dec; 17(47):31911-6. PubMed ID: 26568035
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Grains and grain boundaries in single-layer graphene atomic patchwork quilts.
    Huang PY; Ruiz-Vargas CS; van der Zande AM; Whitney WS; Levendorf MP; Kevek JW; Garg S; Alden JS; Hustedt CJ; Zhu Y; Park J; McEuen PL; Muller DA
    Nature; 2011 Jan; 469(7330):389-92. PubMed ID: 21209615
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improved performance of graphene transistors by strain engineering.
    Nguyen VH; Nguyen HV; Dollfus P
    Nanotechnology; 2014 Apr; 25(16):165201. PubMed ID: 24670679
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bimodal Grain-Size Scaling of Thermal Transport in Polycrystalline Graphene from Large-Scale Molecular Dynamics Simulations.
    Fan Z; Hirvonen P; Pereira LFC; Ervasti MM; Elder KR; Donadio D; Harju A; Ala-Nissila T
    Nano Lett; 2017 Oct; 17(10):5919-5924. PubMed ID: 28877440
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermal transport across twin grain boundaries in polycrystalline graphene from nonequilibrium molecular dynamics simulations.
    Bagri A; Kim SP; Ruoff RS; Shenoy VB
    Nano Lett; 2011 Sep; 11(9):3917-21. PubMed ID: 21863804
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tailoring the thermal and electrical transport properties of graphene films by grain size engineering.
    Ma T; Liu Z; Wen J; Gao Y; Ren X; Chen H; Jin C; Ma XL; Xu N; Cheng HM; Ren W
    Nat Commun; 2017 Feb; 8():14486. PubMed ID: 28205514
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Uniaxial strain on graphene: Raman spectroscopy study and band-gap opening.
    Ni ZH; Yu T; Lu YH; Wang YY; Feng YP; Shen ZX
    ACS Nano; 2008 Nov; 2(11):2301-5. PubMed ID: 19206396
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancing the Strength of Graphene by a Denser Grain Boundary.
    Xu J; Yuan G; Zhu Q; Wang J; Tang S; Gao L
    ACS Nano; 2018 May; 12(5):4529-4535. PubMed ID: 29659251
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.