These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 27218828)

  • 21. Visualization of Grain Structure and Boundaries of Polycrystalline Graphene and Two-Dimensional Materials by Epitaxial Growth of Transition Metal Dichalcogenides.
    Ago H; Fukamachi S; Endo H; Solís-Fernández P; Yunus RM; Uchida Y; Panchal V; Kazakova O; Tsuji M
    ACS Nano; 2016 Mar; 10(3):3233-40. PubMed ID: 26943750
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Semi-analytical approach to transport gaps in polycrystalline graphene.
    Perera D; Rohrer J
    Nanoscale; 2021 Apr; 13(16):7709-7713. PubMed ID: 33928962
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ab initio quantum transport in polycrystalline graphene.
    Dechamps S; Nguyen VH; Charlier JC
    Nanoscale; 2018 Apr; 10(16):7759-7768. PubMed ID: 29658557
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Intrinsic strength and failure behaviors of graphene grain boundaries.
    Zhang J; Zhao J; Lu J
    ACS Nano; 2012 Mar; 6(3):2704-11. PubMed ID: 22369492
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Scale-invariant large nonlocality in polycrystalline graphene.
    Ribeiro M; Power SR; Roche S; Hueso LE; Casanova F
    Nat Commun; 2017 Dec; 8(1):2198. PubMed ID: 29259177
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tunable 2D-gallium arsenide and graphene bandgaps in a graphene/GaAs heterostructure: an ab initio study.
    González-García A; López-Pérez W; González-Hernández R; Rodríguez JA; Milośević MV; Peeters FM
    J Phys Condens Matter; 2019 Jul; 31(26):265502. PubMed ID: 30840939
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nanoscale investigation of charge transport at the grain boundaries and wrinkles in graphene film.
    Ahmad M; An H; Kim YS; Lee JH; Jung J; Chun SH; Seo Y
    Nanotechnology; 2012 Jul; 23(28):285705. PubMed ID: 22728533
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Regain Strain-Hardening in High-Strength Metals by Nanofiller Incorporation at Grain Boundaries.
    Li Z; Wang H; Guo Q; Li Z; Xiong DB; Su Y; Gao H; Li X; Zhang D
    Nano Lett; 2018 Oct; 18(10):6255-6264. PubMed ID: 30193069
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bimodal Phonon Scattering in Graphene Grain Boundaries.
    Yasaei P; Fathizadeh A; Hantehzadeh R; Majee AK; El-Ghandour A; Estrada D; Foster C; Aksamija Z; Khalili-Araghi F; Salehi-Khojin A
    Nano Lett; 2015 Jul; 15(7):4532-40. PubMed ID: 26035002
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Tailoring electrical transport across grain boundaries in polycrystalline graphene.
    Tsen AW; Brown L; Levendorf MP; Ghahari F; Huang PY; Havener RW; Ruiz-Vargas CS; Muller DA; Kim P; Park J
    Science; 2012 Jun; 336(6085):1143-6. PubMed ID: 22654054
    [TBL] [Abstract][Full Text] [Related]  

  • 31. On the mechanism of piezoresistance in nanocrystalline graphite.
    Kumar S; Dehm S; Krupke R
    Beilstein J Nanotechnol; 2024; 15():376-384. PubMed ID: 38633765
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Topological aspects of charge-carrier transmission across grain boundaries in graphene.
    Gargiulo F; Yazyev OV
    Nano Lett; 2014 Jan; 14(1):250-4. PubMed ID: 24295423
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Transition metal chalcogenides: ultrathin inorganic materials with tunable electronic properties.
    Heine T
    Acc Chem Res; 2015 Jan; 48(1):65-72. PubMed ID: 25489917
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition.
    Yu Q; Jauregui LA; Wu W; Colby R; Tian J; Su Z; Cao H; Liu Z; Pandey D; Wei D; Chung TF; Peng P; Guisinger NP; Stach EA; Bao J; Pei SS; Chen YP
    Nat Mater; 2011 Jun; 10(6):443-9. PubMed ID: 21552269
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Critical Strain-Induced Photoresponse in Folded Graphene Superlattices.
    Sun RX; Guo QQ; Huo CF; Yan XQ; Liu ZB; Tian JG
    ACS Appl Mater Interfaces; 2021 May; 13(18):21573-21581. PubMed ID: 33929842
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mechanical manipulations on electronic transport of graphene nanoribbons.
    Wang J; Zhang G; Ye F; Wang X
    J Phys Condens Matter; 2015 Jun; 27(22):225305. PubMed ID: 25985040
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evidence of van Hove singularities in ordered grain boundaries of graphene.
    Ma C; Sun H; Zhao Y; Li B; Li Q; Zhao A; Wang X; Luo Y; Yang J; Wang B; Hou JG
    Phys Rev Lett; 2014 Jun; 112(22):226802. PubMed ID: 24949783
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Intrinsic energy dissipation in CVD-grown graphene nanoresonators.
    Qi Z; Park HS
    Nanoscale; 2012 Jun; 4(11):3460-5. PubMed ID: 22538383
    [TBL] [Abstract][Full Text] [Related]  

  • 39. First-Principle-Based Phonon Transport Properties of Nanoscale Graphene Grain Boundaries.
    Sandonas LM; Sevinçli H; Gutierrez R; Cuniberti G
    Adv Sci (Weinh); 2018 Feb; 5(2):1700365. PubMed ID: 29619296
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Aharonov-Bohm interferences in polycrystalline graphene.
    Nguyen VH; Charlier JC
    Nanoscale Adv; 2020 Jan; 2(1):256-263. PubMed ID: 36133971
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.