These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 27219129)

  • 21. How Fluorine Introduction Solves the Spinel Transition, a Fundamental Problem of Mn-Based Positive Electrodes.
    Mahara Y; Nagasako N; Oka H; Kondo Y; Kosaka S; Nakano H; Nonaka T; Makimura Y
    ACS Appl Mater Interfaces; 2022 Jun; 14(21):24321-24331. PubMed ID: 35579941
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Morphological Evolution of High-Voltage Spinel LiNi(0.5)Mn(1.5)O4 Cathode Materials for Lithium-Ion Batteries: The Critical Effects of Surface Orientations and Particle Size.
    Liu H; Wang J; Zhang X; Zhou D; Qi X; Qiu B; Fang J; Kloepsch R; Schumacher G; Liu Z; Li J
    ACS Appl Mater Interfaces; 2016 Feb; 8(7):4661-75. PubMed ID: 26824793
    [TBL] [Abstract][Full Text] [Related]  

  • 23.
    Lin CC; Hsu CT; Liu W; Huang SC; Lin MH; Kortz U; Mougharbel AS; Chen TY; Hu CW; Lee JF; Wang CC; Liao YF; Li LJ; Li L; Peng S; Stimming U; Chen HY
    ACS Appl Mater Interfaces; 2020 Sep; 12(36):40296-40309. PubMed ID: 32841558
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Phosphorus anionic redox activity revealed by operando P K-edge X-ray absorption spectroscopy on diphosphonate-based conversion materials in Li-ion batteries.
    Schmidt S; Sallard S; Borca C; Huthwelker T; Novák P; Villevieille C
    Chem Commun (Camb); 2018 May; 54(39):4939-4942. PubMed ID: 29700510
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An unexpected large capacity of ultrafine manganese oxide as a sodium-ion battery anode.
    Weng YT; Huang TY; Lim CH; Shao PS; Hy S; Kuo CY; Cheng JH; Hwang BJ; Lee JF; Wu NL
    Nanoscale; 2015 Dec; 7(47):20075-81. PubMed ID: 26567463
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dynamic Structural Transformations in a Series of Zero-Strain Lithium-Ion Battery Materials: Almost Simultaneous
    Mukai K; Uyama T; Nonaka T
    Inorg Chem; 2023 Apr; 62(14):5602-5613. PubMed ID: 36976710
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Operando observations of solid-state electrochemical reactions in Li-ion batteries by spatially resolved TEM EELS and electron holography.
    Yamamoto K; Iriyama Y; Hirayama T
    Microscopy (Oxf); 2017 Feb; 66(1):50-61. PubMed ID: 27733434
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electrochemical Reaction Mechanism of the MoS
    Zhang L; Sun D; Kang J; Feng J; Bechtel HA; Wang LW; Cairns EJ; Guo J
    Nano Lett; 2018 Feb; 18(2):1466-1475. PubMed ID: 29327926
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enhanced Li+ ion transport in LiNi0.5Mn1.5O4 through control of site disorder.
    Zheng J; Xiao J; Yu X; Kovarik L; Gu M; Omenya F; Chen X; Yang XQ; Liu J; Graff GL; Whittingham MS; Zhang JG
    Phys Chem Chem Phys; 2012 Oct; 14(39):13515-21. PubMed ID: 22968196
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Relative stability of normal vs. inverse spinel for 3d transition metal oxides as lithium intercalation cathodes.
    Bhattacharya J; Wolverton C
    Phys Chem Chem Phys; 2013 May; 15(17):6486-98. PubMed ID: 23529669
    [TBL] [Abstract][Full Text] [Related]  

  • 31. MnO Conversion in Li-Ion Batteries: In Situ Studies and the Role of Mesostructuring.
    Butala MM; Danks KR; Lumley MA; Zhou S; Melot BC; Seshadri R
    ACS Appl Mater Interfaces; 2016 Mar; 8(10):6496-503. PubMed ID: 26881741
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Operando X-ray Diffraction and Double-Edge X-ray Absorption Spectroscopy Studies on a Perfect Zero-Strain Material.
    Mukai K; Nonaka T; Uyama T
    Inorg Chem; 2020 Dec; 59(23):16882-16892. PubMed ID: 33161708
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nonequilibrium structural dynamics of nanoparticles in LiNi(1/2)Mn(3/2)O4 cathode under operando conditions.
    Singer A; Ulvestad A; Cho HM; Kim JW; Maser J; Harder R; Meng YS; Shpyrko OG
    Nano Lett; 2014 Sep; 14(9):5295-300. PubMed ID: 25148536
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Quantitative Operando Visualization of Electrochemical Reactions and Li Ions in All-Solid-State Batteries by STEM-EELS with Hyperspectral Image Analyses.
    Nomura Y; Yamamoto K; Hirayama T; Ohkawa M; Igaki E; Hojo N; Saitoh K
    Nano Lett; 2018 Sep; 18(9):5892-5898. PubMed ID: 30130410
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Brannerite-Type Vanadium-Molybdenum Oxide LiVMoO₆ as a Promising Anode Material for Lithium-Ion Batteries with High Capacity and Rate Capability.
    Chen N; Wang C; Hu F; Bie X; Wei Y; Chen G; Du F
    ACS Appl Mater Interfaces; 2015 Jul; 7(29):16117-23. PubMed ID: 26154565
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Aging and Charge Compensation Effects of the Rechargeable Aqueous Zinc/Copper Hexacyanoferrate Battery Elucidated Using In Situ X-ray Techniques.
    Görlin M; Ojwang DO; Lee MT; Renman V; Tai CW; Valvo M
    ACS Appl Mater Interfaces; 2021 Dec; 13(50):59962-59974. PubMed ID: 34878765
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Intercalation anode material for lithium ion battery based on molybdenum dioxide.
    Sen UK; Shaligram A; Mitra S
    ACS Appl Mater Interfaces; 2014 Aug; 6(16):14311-9. PubMed ID: 25062365
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Unveiling the Electrochemical Mechanism of High-Capacity Negative Electrode Model-System BiFeO
    Surendran A; Enale H; Thottungal A; Sarapulova A; Knapp M; Nishanthi ST; Dixon D; Bhaskar A
    ACS Appl Mater Interfaces; 2022 Feb; 14(6):7856-7868. PubMed ID: 35107246
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Anion Redox Chemistry in the Cobalt Free 3d Transition Metal Oxide Intercalation Electrode Li[Li0.2Ni0.2Mn0.6]O2.
    Luo K; Roberts MR; Guerrini N; Tapia-Ruiz N; Hao R; Massel F; Pickup DM; Ramos S; Liu YS; Guo J; Chadwick AV; Duda LC; Bruce PG
    J Am Chem Soc; 2016 Sep; 138(35):11211-8. PubMed ID: 27498756
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Pseudocapacitive hausmannite nanoparticles with (101) facets: synthesis, characterization, and charge-transfer mechanism.
    Yeager MP; Du W; Wang Q; Deskins NA; Sullivan M; Bishop B; Su D; Xu W; Senanayake SD; Si R; Hanson J; Teng X
    ChemSusChem; 2013 Oct; 6(10):1983-92. PubMed ID: 23650213
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.