These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 27219350)
1. Proton Reduction Using a Hydrogenase-Modified Nanoporous Black Silicon Photoelectrode. Zhao Y; Anderson NC; Ratzloff MW; Mulder DW; Zhu K; Turner JA; Neale NR; King PW; Branz HM ACS Appl Mater Interfaces; 2016 Jun; 8(23):14481-7. PubMed ID: 27219350 [TBL] [Abstract][Full Text] [Related]
2. [FeFe]-hydrogenase-catalyzed H2 production in a photoelectrochemical biofuel cell. Hambourger M; Gervaldo M; Svedruzic D; King PW; Gust D; Ghirardi M; Moore AL; Moore TA J Am Chem Soc; 2008 Feb; 130(6):2015-22. PubMed ID: 18205358 [TBL] [Abstract][Full Text] [Related]
3. Solar Water Splitting with a Hydrogenase Integrated in Photoelectrochemical Tandem Cells. Nam DH; Zhang JZ; Andrei V; Kornienko N; Heidary N; Wagner A; Nakanishi K; Sokol KP; Slater B; Zebger I; Hofmann S; Fontecilla-Camps JC; Park CB; Reisner E Angew Chem Int Ed Engl; 2018 Aug; 57(33):10595-10599. PubMed ID: 29888857 [TBL] [Abstract][Full Text] [Related]
4. Oxidatively stable nanoporous silicon photocathodes with enhanced onset voltage for photoelectrochemical proton reduction. Zhao Y; Anderson NC; Zhu K; Aguiar JA; Seabold JA; van de Lagemaat J; Branz HM; Neale NR; Oh J Nano Lett; 2015 Apr; 15(4):2517-25. PubMed ID: 25723908 [TBL] [Abstract][Full Text] [Related]
5. Photoelectrochemical H2 Evolution with a Hydrogenase Immobilized on a TiO2 -Protected Silicon Electrode. Lee CY; Park HS; Fontecilla-Camps JC; Reisner E Angew Chem Int Ed Engl; 2016 May; 55(20):5971-4. PubMed ID: 27061334 [TBL] [Abstract][Full Text] [Related]
6. Catalytic turnover of [FeFe]-hydrogenase based on single-molecule imaging. Madden C; Vaughn MD; Díez-Pérez I; Brown KA; King PW; Gust D; Moore AL; Moore TA J Am Chem Soc; 2012 Jan; 134(3):1577-82. PubMed ID: 21916466 [TBL] [Abstract][Full Text] [Related]
7. Reactions of [FeFe]-hydrogenase models involving the formation of hydrides related to proton reduction and hydrogen oxidation. Wang N; Wang M; Chen L; Sun L Dalton Trans; 2013 Sep; 42(34):12059-71. PubMed ID: 23846321 [TBL] [Abstract][Full Text] [Related]
8. Photoelectrochemical H Lee CY; Park HS; Fontecilla-Camps JC; Reisner E Angew Chem Weinheim Bergstr Ger; 2016 May; 128(20):6075-6078. PubMed ID: 27570301 [TBL] [Abstract][Full Text] [Related]
9. Immobilization of the [FeFe]-hydrogenase CrHydA1 on a gold electrode: design of a catalytic surface for the production of molecular hydrogen. Krassen H; Stripp S; von Abendroth G; Ataka K; Happe T; Heberle J J Biotechnol; 2009 Jun; 142(1):3-9. PubMed ID: 19480942 [TBL] [Abstract][Full Text] [Related]
10. Hydrogen production at high Faradaic efficiency by a bio-electrode based on TiO2 adsorption of a new [FeFe]-hydrogenase from Clostridium perfringens. Morra S; Valetti F; Sarasso V; Castrignanò S; Sadeghi SJ; Gilardi G Bioelectrochemistry; 2015 Dec; 106(Pt B):258-62. PubMed ID: 26278509 [TBL] [Abstract][Full Text] [Related]
11. Branched polyethylenimine improves hydrogen photoproduction from a CdSe quantum dot/[FeFe]-hydrogenase mimic system in neutral aqueous solutions. Liang WJ; Wang F; Wen M; Jian JX; Wang XZ; Chen B; Tung CH; Wu LZ Chemistry; 2015 Feb; 21(8):3187-92. PubMed ID: 25572459 [TBL] [Abstract][Full Text] [Related]
12. Photoelectrochemical hydrogen generation by an [FeFe] hydrogenase active site mimic at a p-type silicon/molecular electrocatalyst junction. Kumar B; Beyler M; Kubiak CP; Ott S Chemistry; 2012 Jan; 18(5):1295-8. PubMed ID: 22223148 [No Abstract] [Full Text] [Related]
13. Reactivation of standard [NiFe]-hydrogenase and bioelectrochemical catalysis of proton reduction and hydrogen oxidation in a mediated-electron-transfer system. Shiraiwa S; So K; Sugimoto Y; Kitazumi Y; Shirai O; Nishikawa K; Higuchi Y; Kano K Bioelectrochemistry; 2018 Oct; 123():156-161. PubMed ID: 29753939 [TBL] [Abstract][Full Text] [Related]
14. An iron-iron hydrogenase mimic with appended electron reservoir for efficient proton reduction in aqueous media. Becker R; Amirjalayer S; Li P; Woutersen S; Reek JN Sci Adv; 2016 Jan; 2(1):e1501014. PubMed ID: 26844297 [TBL] [Abstract][Full Text] [Related]
15. Covalent attachment of FeFe hydrogenases to carbon electrodes for direct electron transfer. Baffert C; Sybirna K; Ezanno P; Lautier T; Hajj V; Meynial-Salles I; Soucaille P; Bottin H; Léger C Anal Chem; 2012 Sep; 84(18):7999-8005. PubMed ID: 22891965 [TBL] [Abstract][Full Text] [Related]
16. High-performance hydrogen production and oxidation electrodes with hydrogenase supported on metallic single-wall carbon nanotube networks. Svedružić D; Blackburn JL; Tenent RC; Rocha JD; Vinzant TB; Heben MJ; King PW J Am Chem Soc; 2011 Mar; 133(12):4299-306. PubMed ID: 21384925 [TBL] [Abstract][Full Text] [Related]
18. Hydrogen bioelectrooxidation on gold nanoparticle-based electrodes modified by Aquifex aeolicus hydrogenase: Application to hydrogen/oxygen enzymatic biofuel cells. Monsalve K; Roger M; Gutierrez-Sanchez C; Ilbert M; Nitsche S; Byrne-Kodjabachian D; Marchi V; Lojou E Bioelectrochemistry; 2015 Dec; 106(Pt A):47-55. PubMed ID: 25960259 [TBL] [Abstract][Full Text] [Related]
19. 3D Branched nanowire photoelectrochemical electrodes for efficient solar water splitting. Kargar A; Sun K; Jing Y; Choi C; Jeong H; Jung GY; Jin S; Wang D ACS Nano; 2013 Oct; 7(10):9407-15. PubMed ID: 24040832 [TBL] [Abstract][Full Text] [Related]
20. Chitosan confinement enhances hydrogen photogeneration from a mimic of the diiron subsite of [FeFe]-hydrogenase. Jian JX; Liu Q; Li ZJ; Wang F; Li XB; Li CB; Liu B; Meng QY; Chen B; Feng K; Tung CH; Wu LZ Nat Commun; 2013; 4():2695. PubMed ID: 24158139 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]