These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
221 related articles for article (PubMed ID: 27219662)
1. Modeling and Simulations in Photoelectrochemical Water Oxidation: From Single Level to Multiscale Modeling. Zhang X; Bieberle-Hütter A ChemSusChem; 2016 Jun; 9(11):1223-42. PubMed ID: 27219662 [TBL] [Abstract][Full Text] [Related]
2. Modeling practical performance limits of photoelectrochemical water splitting based on the current state of materials research. Seitz LC; Chen Z; Forman AJ; Pinaud BA; Benck JD; Jaramillo TF ChemSusChem; 2014 May; 7(5):1372-85. PubMed ID: 24692256 [TBL] [Abstract][Full Text] [Related]
3. Advancing the Chemistry of CuWO4 for Photoelectrochemical Water Oxidation. Lhermitte CR; Bartlett BM Acc Chem Res; 2016 Jun; 49(6):1121-9. PubMed ID: 27227377 [TBL] [Abstract][Full Text] [Related]
4. Roles of cocatalysts in photocatalysis and photoelectrocatalysis. Yang J; Wang D; Han H; Li C Acc Chem Res; 2013 Aug; 46(8):1900-9. PubMed ID: 23530781 [TBL] [Abstract][Full Text] [Related]
5. A Hydrogen-Evolving Hybrid-Electrolyte Battery with Electrochemical/Photoelectrochemical Charging from Water Oxidation. Jin Z; Li P; Xiao D ChemSusChem; 2017 Feb; 10(3):483-488. PubMed ID: 27863111 [TBL] [Abstract][Full Text] [Related]
6. Overall Photoelectrochemical Water Splitting using Tandem Cell under Simulated Sunlight. Kim JH; Kaneko H; Minegishi T; Kubota J; Domen K; Lee JS ChemSusChem; 2016 Jan; 9(1):61-6. PubMed ID: 26668101 [TBL] [Abstract][Full Text] [Related]
7. Recent Advances in Photoelectrochemical Applications of Silicon Materials for Solar-to-Chemicals Conversion. Zhang D; Shi J; Zi W; Wang P; Liu SF ChemSusChem; 2017 Nov; 10(22):4324-4341. PubMed ID: 28977741 [TBL] [Abstract][Full Text] [Related]
8. Modeling, simulation, and fabrication of a fully integrated, acid-stable, scalable solar-driven water-splitting system. Walczak K; Chen Y; Karp C; Beeman JW; Shaner M; Spurgeon J; Sharp ID; Amashukeli X; West W; Jin J; Lewis NS; Xiang C ChemSusChem; 2015 Feb; 8(3):544-51. PubMed ID: 25581231 [TBL] [Abstract][Full Text] [Related]
9. Semiconductor-Electrocatalyst Interfaces: Theory, Experiment, and Applications in Photoelectrochemical Water Splitting. Nellist MR; Laskowski FA; Lin F; Mills TJ; Boettcher SW Acc Chem Res; 2016 Apr; 49(4):733-40. PubMed ID: 27035051 [TBL] [Abstract][Full Text] [Related]
10. Interface Manipulation to Improve Plasmon-Coupled Photoelectrochemical Water Splitting on α-Fe Xu Z; Fan Z; Shi Z; Li M; Feng J; Pei L; Zhou C; Zhou J; Yang L; Li W; Xu G; Yan S; Zou Z ChemSusChem; 2018 Jan; 11(1):237-244. PubMed ID: 28940828 [TBL] [Abstract][Full Text] [Related]
11. Visible light water splitting using dye-sensitized oxide semiconductors. Youngblood WJ; Lee SH; Maeda K; Mallouk TE Acc Chem Res; 2009 Dec; 42(12):1966-73. PubMed ID: 19905000 [TBL] [Abstract][Full Text] [Related]
12. Self-biasing photoelectrochemical cell for spontaneous overall water splitting under visible-light illumination. Chen Q; Li J; Li X; Huang K; Zhou B; Shangguan W ChemSusChem; 2013 Jul; 6(7):1276-81. PubMed ID: 23775929 [TBL] [Abstract][Full Text] [Related]
13. Theoretical Verification of Photoelectrochemical Water Oxidation Using Nanocrystalline TiO2 Electrodes. Yanagida S; Yanagisawa S; Yamashita K; Jono R; Segawa H Molecules; 2015 May; 20(6):9732-44. PubMed ID: 26023936 [TBL] [Abstract][Full Text] [Related]
14. Current progress in developing metal oxide nanoarrays-based photoanodes for photoelectrochemical water splitting. Qiu Y; Pan Z; Chen H; Ye D; Guo L; Fan Z; Yang S Sci Bull (Beijing); 2019 Sep; 64(18):1348-1380. PubMed ID: 36659664 [TBL] [Abstract][Full Text] [Related]
15. Nanostructured tungsten trioxide thin films synthesized for photoelectrocatalytic water oxidation: a review. Zhu T; Chong MN; Chan ES ChemSusChem; 2014 Nov; 7(11):2974-97. PubMed ID: 25274424 [TBL] [Abstract][Full Text] [Related]
16. Photoelectrochemical water splitting using dense and aligned TiO2 nanorod arrays. Wolcott A; Smith WA; Kuykendall TR; Zhao Y; Zhang JZ Small; 2009 Jan; 5(1):104-11. PubMed ID: 19040214 [TBL] [Abstract][Full Text] [Related]
17. A multiscale modelling approach to elucidate the mechanism of the oxygen evolution reaction at the hematite-water interface. Sinha V; Sun D; Meijer EJ; Vlugt TJH; Bieberle-Hütter A Faraday Discuss; 2021 May; 229():89-107. PubMed ID: 33735341 [TBL] [Abstract][Full Text] [Related]
18. Photoelectrochemical Water Splitting System--A Study of Interfacial Charge Transfer with Scanning Electrochemical Microscopy. Zhang B; Zhang X; Xiao X; Shen Y ACS Appl Mater Interfaces; 2016 Jan; 8(3):1606-14. PubMed ID: 26720831 [TBL] [Abstract][Full Text] [Related]
19. General Characterization Methods for Photoelectrochemical Cells for Solar Water Splitting. Shi X; Cai L; Ma M; Zheng X; Park JH ChemSusChem; 2015 Oct; 8(19):3192-203. PubMed ID: 26365789 [TBL] [Abstract][Full Text] [Related]
20. Synthesis of Concentrated Methylcyclohexane as Hydrogen Carrier through Photoelectrochemical Conversion of Toluene and Water. Kageshima Y; Minegishi T; Hisatomi T; Takata T; Kubota J; Domen K ChemSusChem; 2017 Feb; 10(4):659-663. PubMed ID: 27976520 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]