These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

301 related articles for article (PubMed ID: 27219697)

  • 1. An autonomous molecular assembler for programmable chemical synthesis.
    Meng W; Muscat RA; McKee ML; Milnes PJ; El-Sagheer AH; Bath J; Davis BG; Brown T; O'Reilly RK; Turberfield AJ
    Nat Chem; 2016 Jun; 8(6):542-8. PubMed ID: 27219697
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An autonomous polymerization motor powered by DNA hybridization.
    Venkataraman S; Dirks RM; Rothemund PW; Winfree E; Pierce NA
    Nat Nanotechnol; 2007 Aug; 2(8):490-4. PubMed ID: 18654346
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Routing of individual polymers in designed patterns.
    Knudsen JB; Liu L; Bank Kodal AL; Madsen M; Li Q; Song J; Woehrstein JB; Wickham SF; Strauss MT; Schueder F; Vinther J; Krissanaprasit A; Gudnason D; Smith AA; Ogaki R; Zelikin AN; Besenbacher F; Birkedal V; Yin P; Shih WM; Jungmann R; Dong M; Gothelf KV
    Nat Nanotechnol; 2015 Oct; 10(10):892-8. PubMed ID: 26322946
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Evolution of DNA-Templated Synthesis as a Tool for Materials Discovery.
    O'Reilly RK; Turberfield AJ; Wilks TR
    Acc Chem Res; 2017 Oct; 50(10):2496-2509. PubMed ID: 28915003
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Scaffolding along nucleic acid duplexes using 2'-amino-locked nucleic acids.
    Astakhova IK; Wengel J
    Acc Chem Res; 2014 Jun; 47(6):1768-77. PubMed ID: 24749544
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modular DNA-programmed assembly of linear and branched conjugated nanostructures.
    Gothelf KV; Thomsen A; Nielsen M; Cló E; Brown RS
    J Am Chem Soc; 2004 Feb; 126(4):1044-6. PubMed ID: 14746471
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemistries for DNA Nanotechnology.
    Madsen M; Gothelf KV
    Chem Rev; 2019 May; 119(10):6384-6458. PubMed ID: 30714731
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DNA-Programmed Chemical Synthesis of Polymers and Inorganic Nanomaterials.
    Xu X; Winterwerber P; Ng D; Wu Y
    Top Curr Chem (Cham); 2020 Mar; 378(2):31. PubMed ID: 32146596
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis of two mirror image 4-helix junctions derived from glycerol nucleic acid.
    Zhang RS; McCullum EO; Chaput JC
    J Am Chem Soc; 2008 May; 130(18):5846-7. PubMed ID: 18407636
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single-molecule visualization of the hybridization and dissociation of photoresponsive oligonucleotides and their reversible switching behavior in a DNA nanostructure.
    Endo M; Yang Y; Suzuki Y; Hidaka K; Sugiyama H
    Angew Chem Int Ed Engl; 2012 Oct; 51(42):10518-22. PubMed ID: 22965475
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Independent sets of DNA oligonucleotides for nanotechnology applications.
    Yu W; Lee JS; Johnson C; Kim JW; Deaton R
    IEEE Trans Nanobioscience; 2010 Mar; 9(1):38-43. PubMed ID: 19906601
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic DNA nanotechnology using strand-displacement reactions.
    Zhang DY; Seelig G
    Nat Chem; 2011 Feb; 3(2):103-13. PubMed ID: 21258382
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solid-phase gene assembly.
    Beattie KL; Fowler RF
    Nature; 1991 Aug; 352(6335):548-9. PubMed ID: 1865911
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DNA nanotechnology.
    Wilner OI; Willner B; Willner I
    Adv Exp Med Biol; 2012; 733():97-114. PubMed ID: 22101716
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid chiral assembly of rigid DNA building blocks for molecular nanofabrication.
    Goodman RP; Schaap IA; Tardin CF; Erben CM; Berry RM; Schmidt CF; Turberfield AJ
    Science; 2005 Dec; 310(5754):1661-5. PubMed ID: 16339440
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Switchable reconfiguration of nucleic acid nanostructures by stimuli-responsive DNA machines.
    Liu X; Lu CH; Willner I
    Acc Chem Res; 2014 Jun; 47(6):1673-80. PubMed ID: 24654959
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DNA-PAINT Super-Resolution Imaging for Nucleic Acid Nanostructures.
    Dai M
    Methods Mol Biol; 2017; 1500():185-202. PubMed ID: 27813009
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A modular approach to DNA-programmed self-assembly of macromolecular nanostructures.
    Gothelf KV; Brown RS
    Chemistry; 2005 Feb; 11(4):1062-9. PubMed ID: 15515065
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Folding and cutting DNA into reconfigurable topological nanostructures.
    Han D; Pal S; Liu Y; Yan H
    Nat Nanotechnol; 2010 Oct; 5(10):712-7. PubMed ID: 20890274
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gigadalton-scale shape-programmable DNA assemblies.
    Wagenbauer KF; Sigl C; Dietz H
    Nature; 2017 Dec; 552(7683):78-83. PubMed ID: 29219966
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.