These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 27220219)

  • 21. Variation in thermal tolerance of North American ants.
    Verble-Pearson RM; Gifford ME; Yanoviak SP
    J Therm Biol; 2015 Feb; 48():65-8. PubMed ID: 25660632
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Richness and Composition of Ground-dwelling Ants in Tropical Rainforest and Surrounding Landscapes in the Colombian Inter-Andean Valley.
    Achury R; Suarez AV
    Neotrop Entomol; 2018 Dec; 47(6):731-741. PubMed ID: 29190001
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Adhesion and Running Speed of a Tropical Arboreal Ant (Cephalotes atratus) on Rough, Narrow, and Inclined Substrates.
    Stark AY; Yanoviak SP
    Integr Comp Biol; 2020 Oct; 60(4):829-839. PubMed ID: 32533841
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evolution of thermal tolerance and its fitness consequences: parallel and non-parallel responses to urban heat islands across three cities.
    Diamond SE; Chick LD; Perez A; Strickler SA; Martin RA
    Proc Biol Sci; 2018 Jul; 285(1882):. PubMed ID: 30051828
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ant diversity as a direct and indirect driver of pselaphine rove beetle (Coleoptera: Staphylinidae) functional diversity in tropical rainforests, Sabah, Malaysian Borneo.
    Psomas E; Holdsworth S; Eggleton P
    J Morphol; 2018 Jul; 279(7):981-996. PubMed ID: 29676002
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Local adaptation in thermal tolerance for a tropical butterfly across ecotone and rainforest habitats.
    Dongmo MAK; Hanna R; Smith TB; Fiaboe KKM; Fomena A; Bonebrake TC
    Biol Open; 2021 Apr; 10(4):. PubMed ID: 34416009
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The descent of ant: field-measured performance of gliding ants.
    Munk Y; Yanoviak SP; Koehl MA; Dudley R
    J Exp Biol; 2015 May; 218(Pt 9):1393-401. PubMed ID: 25788722
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The surrounding landscape influences the diversity of leaf-litter ants in riparian cloud forest remnants.
    García-Martínez MÁ; Valenzuela-González JE; Escobar-Sarria F; López-Barrera F; Castaño-Meneses G
    PLoS One; 2017; 12(2):e0172464. PubMed ID: 28234948
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Urban physiology: city ants possess high heat tolerance.
    Angilletta MJ; Wilson RS; Niehaus AC; Sears MW; Navas CA; Ribeiro PL
    PLoS One; 2007 Feb; 2(2):e258. PubMed ID: 17327918
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Elevation and forest clearing effects on foraging differ between surface--and subterranean--foraging army ants (Formicidae: Ecitoninae).
    Kumar A; O'Donnell S
    J Anim Ecol; 2009 Jan; 78(1):91-7. PubMed ID: 19120597
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The contributions of underground-nesting ants to CO
    Wang S; Li J; Zhang Z; Cao R; Chen M; Li S
    Sci Total Environ; 2018 Jul; 630():1095-1102. PubMed ID: 29554731
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Visual navigation in the Neotropical ant Odontomachus hastatus (Formicidae, Ponerinae), a predominantly nocturnal, canopy-dwelling predator of the Atlantic rainforest.
    Rodrigues PA; Oliveira PS
    Behav Processes; 2014 Nov; 109 Pt A():48-57. PubMed ID: 24969268
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Why are there more arboreal ant species in primary than in secondary tropical forests?
    Klimes P; Idigel C; Rimandai M; Fayle TM; Janda M; Weiblen GD; Novotny V
    J Anim Ecol; 2012 Sep; 81(5):1103-12. PubMed ID: 22642689
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evidence for locally adaptive metabolic rates among ant populations along an elevational gradient.
    Shik JZ; Arnan X; Oms CS; Cerdá X; Boulay R
    J Anim Ecol; 2019 Aug; 88(8):1240-1249. PubMed ID: 31077366
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Basking behavior predicts the evolution of heat tolerance in Australian rainforest lizards.
    Muñoz MM; Langham GM; Brandley MC; Rosauer DF; Williams SE; Moritz C
    Evolution; 2016 Nov; 70(11):2537-2549. PubMed ID: 27612295
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Extinction risks forced by climatic change and intraspecific variation in the thermal physiology of a tropical lizard.
    Pontes-da-Silva E; Magnusson WE; Sinervo B; Caetano GH; Miles DB; Colli GR; Diele-Viegas LM; Fenker J; Santos JC; Werneck FP
    J Therm Biol; 2018 Apr; 73():50-60. PubMed ID: 29549991
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Escape to the high canopy-thermal deficiency causes niche expansion in a forest-floor ant.
    Seifert B; Fiedler P; Schultz R
    Insect Sci; 2017 Aug; 24(4):699-707. PubMed ID: 27126058
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of desiccation and starvation on thermal tolerance and the heat-shock response in forest ants.
    Nguyen AD; DeNovellis K; Resendez S; Pustilnik JD; Gotelli NJ; Parker JD; Cahan SH
    J Comp Physiol B; 2017 Dec; 187(8):1107-1116. PubMed ID: 28439669
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Interaction between ants and fruits of Guapira opposita (Nyctaginaceae) in a Brazilian sandy plain rainforest: ant effects on seeds and seedlings.
    Passos L; Oliveira PS
    Oecologia; 2004 May; 139(3):376-82. PubMed ID: 15034779
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The response of ants to climate change.
    Parr CL; Bishop TR
    Glob Chang Biol; 2022 May; 28(10):3188-3205. PubMed ID: 35274797
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.