These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
329 related articles for article (PubMed ID: 27220501)
1. Transient variation of aerosol size distribution in an underground subway station. Kwon SB; Namgung HG; Jeong W; Park D; Eom JK Environ Monit Assess; 2016 Jun; 188(6):362. PubMed ID: 27220501 [TBL] [Abstract][Full Text] [Related]
2. Exposure to airborne particulate matter in the subway system. Martins V; Moreno T; Minguillón MC; Amato F; de Miguel E; Capdevila M; Querol X Sci Total Environ; 2015 Apr; 511():711-22. PubMed ID: 25616190 [TBL] [Abstract][Full Text] [Related]
3. Size-dependent characteristics of diurnal particle concentration variation in an underground subway tunnel. Woo SH; Kim JB; Bae GN; Hwang MS; Tahk GH; Yoon HH; Kwon SB; Park D; Yook SJ Environ Monit Assess; 2018 Nov; 190(12):740. PubMed ID: 30465289 [TBL] [Abstract][Full Text] [Related]
4. A review of traditional and advanced technologies for the removal of particulate matter in subway systems. Park JH; Son YS; Kim KH Indoor Air; 2019 Mar; 29(2):177-191. PubMed ID: 30586211 [TBL] [Abstract][Full Text] [Related]
5. Chemical speciation of size-segregated floor dusts and airborne magnetic particles collected at underground subway stations in Seoul, Korea. Jung HJ; Kim B; Malek MA; Koo YS; Jung JH; Son YS; Kim JC; Kim H; Ro CU J Hazard Mater; 2012 Apr; 213-214():331-40. PubMed ID: 22381374 [TBL] [Abstract][Full Text] [Related]
6. Factors controlling air quality in different European subway systems. Martins V; Moreno T; Mendes L; Eleftheriadis K; Diapouli E; Alves CA; Duarte M; de Miguel E; Capdevila M; Querol X; Minguillón MC Environ Res; 2016 Apr; 146():35-46. PubMed ID: 26717078 [TBL] [Abstract][Full Text] [Related]
7. Installation of platform screen doors and their impact on indoor air quality: Seoul subway trains. Son YS; Jeon JS; Lee HJ; Ryu IC; Kim JC J Air Waste Manag Assoc; 2014 Sep; 64(9):1054-61. PubMed ID: 25283003 [TBL] [Abstract][Full Text] [Related]
8. Granulometric and magnetic properties of deposited particles in the Beijing subway and the implications for air quality management. Cui G; Zhou L; Dearing J Sci Total Environ; 2016 Oct; 568():1059-1068. PubMed ID: 27372891 [TBL] [Abstract][Full Text] [Related]
9. The effect of ventilation protocols on airborne particulate matter in subway systems. Moreno T; Reche C; Minguillón MC; Capdevila M; de Miguel E; Querol X Sci Total Environ; 2017 Apr; 584-585():1317-1323. PubMed ID: 28189308 [TBL] [Abstract][Full Text] [Related]
10. Origin of polycyclic aromatic hydrocarbons and other organic pollutants in the air particles of subway stations in Barcelona. van Drooge BL; Prats RM; Reche C; Minguillón M; Querol X; Grimalt JO; Moreno T Sci Total Environ; 2018 Nov; 642():148-154. PubMed ID: 29894874 [TBL] [Abstract][Full Text] [Related]
11. Aerosol sources in subway environments. Minguillón MC; Reche C; Martins V; Amato F; de Miguel E; Capdevila M; Centelles S; Querol X; Moreno T Environ Res; 2018 Nov; 167():314-328. PubMed ID: 30092454 [TBL] [Abstract][Full Text] [Related]
12. Spatial distribution of particulate matter (PM10 and PM2.5) in Seoul Metropolitan Subway stations. Kim KY; Kim YS; Roh YM; Lee CM; Kim CN J Hazard Mater; 2008 Jun; 154(1-3):440-3. PubMed ID: 18036738 [TBL] [Abstract][Full Text] [Related]
13. Investigation of air pollution of Shanghai subway stations in ventilation seasons in terms of PM Guo E; Shen H; He L; Zhang J Toxicol Ind Health; 2017 Jul; 33(7):588-600. PubMed ID: 28678677 [TBL] [Abstract][Full Text] [Related]
14. Concentration and characterization of airborne particles in Tehran's subway system. Kamani H; Hoseini M; Seyedsalehi M; Mahdavi Y; Jaafari J; Safari GH Environ Sci Pollut Res Int; 2014 Jun; 21(12):7319-28. PubMed ID: 24573466 [TBL] [Abstract][Full Text] [Related]
15. Characterisation of nano- and micron-sized airborne and collected subway particles, a multi-analytical approach. Midander K; Elihn K; Wallén A; Belova L; Karlsson AK; Wallinder IO Sci Total Environ; 2012 Jun; 427-428():390-400. PubMed ID: 22551935 [TBL] [Abstract][Full Text] [Related]
16. A new look at inhalable metalliferous airborne particles on rail subway platforms. Moreno T; Martins V; Querol X; Jones T; BéruBé K; Minguillón MC; Amato F; Capdevila M; de Miguel E; Centelles S; Gibbons W Sci Total Environ; 2015 Feb; 505():367-75. PubMed ID: 25461038 [TBL] [Abstract][Full Text] [Related]
17. Origin of inorganic and organic components of PM2.5 in subway stations of Barcelona, Spain. Martins V; Moreno T; Minguillón MC; van Drooge BL; Reche C; Amato F; de Miguel E; Capdevila M; Centelles S; Querol X Environ Pollut; 2016 Jan; 208(Pt A):125-136. PubMed ID: 26189044 [TBL] [Abstract][Full Text] [Related]
18. Development and application of an aerosol screening model for size-resolved urban aerosols. Stanier CO; Lee SR; Res Rep Health Eff Inst; 2014 Jun; (179):3-79. PubMed ID: 25145039 [TBL] [Abstract][Full Text] [Related]
19. A multivariate study for characterizing particulate matter (PM(10), PM(2.5), and PM(1)) in Seoul metropolitan subway stations, Korea. Kwon SB; Jeong W; Park D; Kim KT; Cho KH J Hazard Mater; 2015 Oct; 297():295-303. PubMed ID: 26010475 [TBL] [Abstract][Full Text] [Related]
20. Estimation of inhaled airborne particle number concentration by subway users in Seoul, Korea. Kim M; Park S; Namgung HG; Kwon SB Environ Pollut; 2017 Dec; 231(Pt 1):663-670. PubMed ID: 28846987 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]