BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 27220760)

  • 1. In Vivo Visualization of Stromal Macrophages via label-free FLIM-based metabolite imaging.
    Szulczewski JM; Inman DR; Entenberg D; Ponik SM; Aguirre-Ghiso J; Castracane J; Condeelis J; Eliceiri KW; Keely PJ
    Sci Rep; 2016 May; 6():25086. PubMed ID: 27220760
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Autofluorescence lifetime imaging of cellular metabolism: Sensitivity toward cell density, pH, intracellular, and intercellular heterogeneity.
    Chacko JV; Eliceiri KW
    Cytometry A; 2019 Jan; 95(1):56-69. PubMed ID: 30296355
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Autofluorescence Imaging of 3D Tumor-Macrophage Microscale Cultures Resolves Spatial and Temporal Dynamics of Macrophage Metabolism.
    Heaster TM; Humayun M; Yu J; Beebe DJ; Skala MC
    Cancer Res; 2020 Dec; 80(23):5408-5423. PubMed ID: 33093167
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluating Cell Metabolism Through Autofluorescence Imaging of NAD(P)H and FAD.
    Kolenc OI; Quinn KP
    Antioxid Redox Signal; 2019 Feb; 30(6):875-889. PubMed ID: 29268621
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiphoton FLIM imaging of NAD(P)H and FAD with one excitation wavelength.
    Cao R; Wallrabe H; Periasamy A
    J Biomed Opt; 2020 Jan; 25(1):1-16. PubMed ID: 31920048
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimization of FLIM imaging, fitting and analysis for auto-fluorescent NAD(P)H and FAD in cells and tissues.
    Cao R; Wallrabe H; Siller K; Periasamy A
    Methods Appl Fluoresc; 2020 Feb; 8(2):024001. PubMed ID: 31972557
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic imaging with the use of fluorescence lifetime imaging microscopy (FLIM) accurately detects mitochondrial dysfunction in mouse oocytes.
    Sanchez T; Wang T; Pedro MV; Zhang M; Esencan E; Sakkas D; Needleman D; Seli E
    Fertil Steril; 2018 Dec; 110(7):1387-1397. PubMed ID: 30446247
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Label-Free Segmentation Approach for Intravital Imaging of Mammary Tumor Microenvironment.
    Burkel BM; Inman DR; Virumbrales-Muñoz M; Hoffmann EJ; Ponik SM
    J Vis Exp; 2022 May; (183):. PubMed ID: 35695521
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Label-free identification of macrophage phenotype by fluorescence lifetime imaging microscopy.
    Alfonso-García A; Smith TD; Datta R; Luu TU; Gratton E; Potma EO; Liu WF
    J Biomed Opt; 2016 Apr; 21(4):46005. PubMed ID: 27086689
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Machine Learning Methods for Fluorescence Lifetime Imaging (FLIM) Based Label-Free Detection of Microglia.
    Sagar MAK; Cheng KP; Ouellette JN; Williams JC; Watters JJ; Eliceiri KW
    Front Neurosci; 2020; 14():931. PubMed ID: 33013309
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantification of the Metabolic State in Cell-Model of Parkinson's Disease by Fluorescence Lifetime Imaging Microscopy.
    Chakraborty S; Nian FS; Tsai JW; Karmenyan A; Chiou A
    Sci Rep; 2016 Jan; 6():19145. PubMed ID: 26758390
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two-photon fluorescence lifetime imaging microscopy of NADH metabolism in HIV-1 infected cells and tissues.
    Snyder GA; Kumar S; Lewis GK; Ray K
    Front Immunol; 2023; 14():1213180. PubMed ID: 37662898
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced quantification of metabolic activity for individual adipocytes by label-free FLIM.
    Evers M; Salma N; Osseiran S; Casper M; Birngruber R; Evans CL; Manstein D
    Sci Rep; 2018 Jun; 8(1):8757. PubMed ID: 29884881
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent trends in two-photon auto-fluorescence lifetime imaging (2P-FLIM) and its biomedical applications.
    Ranawat H; Pal S; Mazumder N
    Biomed Eng Lett; 2019 Aug; 9(3):293-310. PubMed ID: 31456890
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A hybrid FLIM-elastic net platform for label free profiling of breast cancer.
    Damayanti NP; Craig AP; Irudayaraj J
    Analyst; 2013 Dec; 138(23):7127-34. PubMed ID: 24106733
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolism of HeLa cells revealed through autofluorescence lifetime upon infection with enterohemorrhagic Escherichia coli.
    Buryakina TY; Su PT; Syu W; Chang CA; Fan HF; Kao FJ
    J Biomed Opt; 2012 Oct; 17(10):101503. PubMed ID: 23223979
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Visualization of Breast Cancer Metabolism Using Multimodal Nonlinear Optical Microscopy of Cellular Lipids and Redox State.
    Hou J; Williams J; Botvinick EL; Potma EO; Tromberg BJ
    Cancer Res; 2018 May; 78(10):2503-2512. PubMed ID: 29535219
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intravital Metabolic Autofluorescence Imaging Captures Macrophage Heterogeneity Across Normal and Cancerous Tissue.
    Heaster TM; Heaton AR; Sondel PM; Skala MC
    Front Bioeng Biotechnol; 2021; 9():644648. PubMed ID: 33959597
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optical changes in THP-1 macrophage metabolism in response to pro- and anti-inflammatory stimuli reported by label-free two-photon imaging.
    Smokelin I; Mizzoni C; Erndt-Marino J; Kaplan D; Georgakoudi I
    J Biomed Opt; 2020 Jan; 25(1):1-14. PubMed ID: 31953928
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonlinear optical microscopy and computational analysis of intrinsic signatures in breast cancer.
    Rueden CT; Conklin MW; Provenzano PP; Keely PJ; Eliceiri KW
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():4077-80. PubMed ID: 19964821
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.