These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 27220884)

  • 1. The influence of dopant concentration on temperature dependent emission spectra in LiLa1-x-yEuxTbyP4O12 nanocrystals: toward rational design of highly-sensitive luminescent nanothermometers.
    Marciniak L; Bednarkiewicz A
    Phys Chem Chem Phys; 2016 Jun; 18(23):15584-92. PubMed ID: 27220884
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphor-Assisted Temperature Sensing and Imaging Using Resonant and Nonresonant Photoexcitation Scheme.
    Bednarkiewicz A; Trejgis K; Drabik J; Kowalczyk A; Marciniak L
    ACS Appl Mater Interfaces; 2017 Dec; 9(49):43081-43089. PubMed ID: 29165982
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Ga
    Salerno EV; Zeler J; Eliseeva SV; Hernández-Rodríguez MA; Carneiro Neto AN; Petoud S; Pecoraro VL; Carlos LD
    Chemistry; 2020 Nov; 26(61):13792-13796. PubMed ID: 32663350
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reliability of rare-earth-doped infrared luminescent nanothermometers.
    Labrador-Páez L; Pedroni M; Speghini A; García-Solé J; Haro-González P; Jaque D
    Nanoscale; 2018 Dec; 10(47):22319-22328. PubMed ID: 30468230
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ratiometric highly sensitive luminescent nanothermometers working in the room temperature range. Applications to heat propagation in nanofluids.
    Brites CD; Lima PP; Silva NJ; Millán A; Amaral VS; Palacio F; Carlos LD
    Nanoscale; 2013 Aug; 5(16):7572-80. PubMed ID: 23835484
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering excited state absorption based nanothermometry for temperature sensing and imaging.
    Trejgis K; Bednarkiewicz A; Marciniak L
    Nanoscale; 2020 Feb; 12(7):4667-4675. PubMed ID: 32048674
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancing the Relative Sensitivity of V
    Kniec K; Ledwa K; Marciniak L
    Nanomaterials (Basel); 2019 Sep; 9(10):. PubMed ID: 31557921
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimization of highly sensitive YAG:Cr
    Marciniak L; Bednarkiewicz A; Drabik J; Trejgis K; Strek W
    Phys Chem Chem Phys; 2017 Mar; 19(10):7343-7351. PubMed ID: 28239697
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multimode high-sensitivity optical YVO
    Kolesnikov IE; Kurochkin MA; Golyeva EV; Mamonova DV; Kalinichev AA; Kolesnikov EY; Lähderanta E
    Phys Chem Chem Phys; 2020 Dec; 22(48):28183-28190. PubMed ID: 33291123
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis and characterizations of YZ-BDC:Eu
    Kieu Giang LT; Trejgis K; Marciniak Ł; Opalińska A; Koltsov IE; Łojkowski W
    RSC Adv; 2022 Apr; 12(21):13065-13073. PubMed ID: 35497002
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of Noise and Background on Measurement Uncertainties in Luminescence Thermometry.
    van Swieten TP; Meijerink A; Rabouw FT
    ACS Photonics; 2022 Apr; 9(4):1366-1374. PubMed ID: 35480490
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Near infrared absorbing near infrared emitting highly-sensitive luminescent nanothermometer based on Nd(3+) to Yb(3+) energy transfer.
    Marciniak Ł; Bednarkiewicz A; Stefanski M; Tomala R; Hreniak D; Strek W
    Phys Chem Chem Phys; 2015 Oct; 17(37):24315-21. PubMed ID: 26327196
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly aqueous soluble CaF
    Ansari AA; Parchur AK; Kumar B; Rai SB
    J Mater Sci Mater Med; 2016 Dec; 27(12):178. PubMed ID: 27752975
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Energy Transfer Mechanisms and Optical Thermometry of BaMgF
    Kore BP; Kumar A; Erasmus L; Kroon RE; Terblans JJ; Dhoble SJ; Swart HC
    Inorg Chem; 2018 Jan; 57(1):288-299. PubMed ID: 29227098
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancement of the sensitivity of single band ratiometric luminescent nanothermometers based on Tb
    Drabik J; Kowalski R; Marciniak L
    Sci Rep; 2020 Jul; 10(1):11190. PubMed ID: 32636451
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carbon Dot Nanothermometry: Intracellular Photoluminescence Lifetime Thermal Sensing.
    Kalytchuk S; Poláková K; Wang Y; Froning JP; Cepe K; Rogach AL; Zbořil R
    ACS Nano; 2017 Feb; 11(2):1432-1442. PubMed ID: 28125202
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis of ZrO
    Li M; Zhou J; Lei R; Wang H; Huang F; Xu S
    Dalton Trans; 2021 Nov; 50(43):15688-15695. PubMed ID: 34693945
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unveiling in Vivo Subcutaneous Thermal Dynamics by Infrared Luminescent Nanothermometers.
    Ximendes EC; Santos WQ; Rocha U; Kagola UK; Sanz-Rodríguez F; Fernández N; Gouveia-Neto Ada S; Bravo D; Domingo AM; del Rosal B; Brites CD; Carlos LD; Jaque D; Jacinto C
    Nano Lett; 2016 Mar; 16(3):1695-703. PubMed ID: 26845418
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thulium doped LaF
    Ximendes EC; Pereira AF; Rocha U; Silva WF; Jaque D; Jacinto C
    Nanoscale; 2019 May; 11(18):8864-8869. PubMed ID: 31012902
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural and spectroscopic properties of LaOF:Eu3+ nanocrystals prepared by the sol-gel Pechini method.
    Grzyb T; Lis S
    Inorg Chem; 2011 Sep; 50(17):8112-20. PubMed ID: 21805994
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.