These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
74 related articles for article (PubMed ID: 27222226)
41. Hierarchically porous MnO2 microspheres doped with homogeneously distributed Fe3O4 nanoparticles for supercapacitors. Zhu J; Tang S; Xie H; Dai Y; Meng X ACS Appl Mater Interfaces; 2014 Oct; 6(20):17637-46. PubMed ID: 25255299 [TBL] [Abstract][Full Text] [Related]
42. Decoration of spongelike Ni(OH)2 nanoparticles onto MWCNTs using an easily manipulated chemical protocol for supercapacitors. Dubal DP; Gund GS; Lokhande CD; Holze R ACS Appl Mater Interfaces; 2013 Apr; 5(7):2446-54. PubMed ID: 23469934 [TBL] [Abstract][Full Text] [Related]
43. High rate performance of flexible pseudocapacitors fabricated using ionic-liquid-based proton conducting polymer electrolyte with poly(3, 4-ethylenedioxythiophene):poly(styrene sulfonate) and its hydrous ruthenium oxide composite electrodes. Sellam ; Hashmi SA ACS Appl Mater Interfaces; 2013 May; 5(9):3875-83. PubMed ID: 23548059 [TBL] [Abstract][Full Text] [Related]
44. Surface functional groups of carbon nanotubes to manipulate capacitive behaviors. Park SK; Mahmood Q; Park HS Nanoscale; 2013 Dec; 5(24):12304-9. PubMed ID: 24162723 [TBL] [Abstract][Full Text] [Related]
45. Polyanthraquinone as a Reliable Organic Electrode for Stable and Fast Lithium Storage. Song Z; Qian Y; Gordin ML; Tang D; Xu T; Otani M; Zhan H; Zhou H; Wang D Angew Chem Int Ed Engl; 2015 Nov; 54(47):13947-51. PubMed ID: 26411505 [TBL] [Abstract][Full Text] [Related]
46. Synthesis of novel ZnV₂O₄ hierarchical nanospheres and their applications as electrochemical supercapacitor and hydrogen storage material. Butt FK; Tahir M; Cao C; Idrees F; Ahmed R; Khan WS; Ali Z; Mahmood N; Tanveer M; Mahmood A; Aslam I ACS Appl Mater Interfaces; 2014 Aug; 6(16):13635-41. PubMed ID: 25076046 [TBL] [Abstract][Full Text] [Related]
47. Covalent surface modification of chemically derived graphene and its application as supercapacitor electrode material. Jana M; Khanra P; Murmu NC; Samanta P; Lee JH; Kuila T Phys Chem Chem Phys; 2014 Apr; 16(16):7618-26. PubMed ID: 24643242 [TBL] [Abstract][Full Text] [Related]
48. Supercapacitor electrodes based on layered tungsten disulfide-reduced graphene oxide hybrids synthesized by a facile hydrothermal method. Ratha S; Rout CS ACS Appl Mater Interfaces; 2013 Nov; 5(21):11427-33. PubMed ID: 24125029 [TBL] [Abstract][Full Text] [Related]
49. Large-scale preparation of shape controlled SnO and improved capacitance for supercapacitors: from nanoclusters to square microplates. Wang L; Ji H; Zhu F; Chen Z; Yang Y; Jiang X; Pinto J; Yang G Nanoscale; 2013 Aug; 5(16):7613-21. PubMed ID: 23842544 [TBL] [Abstract][Full Text] [Related]
50. Three-dimensional skeleton networks of graphene wrapped polyaniline nanofibers: an excellent structure for high-performance flexible solid-state supercapacitors. Hu N; Zhang L; Yang C; Zhao J; Yang Z; Wei H; Liao H; Feng Z; Fisher A; Zhang Y; Xu ZJ Sci Rep; 2016 Jan; 6():19777. PubMed ID: 26795067 [TBL] [Abstract][Full Text] [Related]
51. High-energy-density, all-solid-state microsupercapacitors with three-dimensional interdigital electrodes of carbon/polymer electrolyte composite. Pu J; Wang X; Zhang T; Li S; Liu J; Komvopoulos K Nanotechnology; 2016 Jan; 27(4):045701. PubMed ID: 26670532 [TBL] [Abstract][Full Text] [Related]
52. Electric double-layer capacitors based on highly graphitized nanoporous carbons derived from ZIF-67. Torad NL; Salunkhe RR; Li Y; Hamoudi H; Imura M; Sakka Y; Hu CC; Yamauchi Y Chemistry; 2014 Jun; 20(26):7895-900. PubMed ID: 24788922 [TBL] [Abstract][Full Text] [Related]
53. Triphasic Oxygen Storage in Wet Nanoparticulate Polymer of Intrinsic Microporosity (PIM-1) on Platinum: An Electrochemical Investigation. Azevedo Beluomini M; Ramos Stradiotto N; Boldrin Zanoni MV; Carta M; McKeown NB; Fletcher PJ; Sain S; Li Z; Marken F ACS Appl Mater Interfaces; 2024 Jul; 16(29):37865-37873. PubMed ID: 38995231 [TBL] [Abstract][Full Text] [Related]
54. Nitrogen-Rich Porous Organic Polymers from an Irreversible Amine-Epoxy Reaction for Pd Nanocatalyst Carrier. Li A; Dong F; Xiong Y Molecules; 2023 Jun; 28(12):. PubMed ID: 37375285 [TBL] [Abstract][Full Text] [Related]
55. Aromatic Amine-Functionalized Covalent Organic Frameworks (COFs) for CO Dautzenberg E; Li G; de Smet LCPM ACS Appl Mater Interfaces; 2023 Feb; 15(4):5118-5127. PubMed ID: 36648205 [TBL] [Abstract][Full Text] [Related]
56. Preparation of triazine containing porous organic polymer for high performance supercapacitor applications. Xu L; Liu R; Wang F; Yan S; Shi X; Yang J RSC Adv; 2019 Jan; 9(3):1586-1590. PubMed ID: 35518024 [TBL] [Abstract][Full Text] [Related]
57. Layer-by-Layer Electrode Fabrication for Improved Performance of Porous Polyimide-Based Supercapacitors. Fernando N; Veldhuizen H; Nagai A; van der Zwaag S; Abdelkader A Materials (Basel); 2021 Dec; 15(1):. PubMed ID: 35009150 [TBL] [Abstract][Full Text] [Related]
58. Bulky Isopropyl Group Loaded Tetraaryl Pyrene Based Azo-Linked Covalent Organic Polymer for Nitroaromatics Sensing and CO Gupta SK; Kaleeswaran D; Nandi S; Vaidhyanathan R; Murugavel R ACS Omega; 2017 Jul; 2(7):3572-3582. PubMed ID: 31457676 [TBL] [Abstract][Full Text] [Related]
59. Ag Liu M; Yao C; Liu C; Xu Y Sci Rep; 2018 Sep; 8(1):14072. PubMed ID: 30232370 [TBL] [Abstract][Full Text] [Related]
60. Porous Polymer Bearing Polyphenolic Organic Building Units as a Chemotherapeutic Agent for Cancer Treatment. Bhanja P; Mishra S; Manna K; Das Saha K; Bhaumik A ACS Omega; 2018 Jan; 3(1):529-535. PubMed ID: 30023782 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]