These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 27223268)

  • 1. Control of Coherences and Optical Responses of Pigment-Protein Complexes by Plasmonic Nanoantennae.
    Caprasecca S; Guido CA; Mennucci B
    J Phys Chem Lett; 2016 Jun; 7(12):2189-96. PubMed ID: 27223268
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanoantenna enhanced emission of light-harvesting complex 2: the role of resonance, polarization, and radiative and non-radiative rates.
    Wientjes E; Renger J; Curto AG; Cogdell R; van Hulst NF
    Phys Chem Chem Phys; 2014 Dec; 16(45):24739-46. PubMed ID: 25315613
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Origin of long-lived coherences in light-harvesting complexes.
    Christensson N; Kauffmann HF; Pullerits T; Mančal T
    J Phys Chem B; 2012 Jun; 116(25):7449-54. PubMed ID: 22642682
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasmon enhanced light harvesting: multiscale modeling of the FMO protein coupled with gold nanoparticles.
    Andreussi O; Caprasecca S; Cupellini L; Guarnetti-Prandi I; Guido CA; Jurinovich S; Viani L; Mennucci B
    J Phys Chem A; 2015 May; 119(21):5197-206. PubMed ID: 25419640
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extracting dynamics of excitonic coherences in congested spectra of photosynthetic light harvesting antenna complexes.
    Caram JR; Engel GS
    Faraday Discuss; 2011; 153():93-104; discussion 189-212. PubMed ID: 22452075
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exciton properties and optical spectra of light harvesting complex II from a fully atomistic description.
    Sláma V; Cupellini L; Mennucci B
    Phys Chem Chem Phys; 2020 Aug; 22(29):16783-16795. PubMed ID: 32662461
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ground-State Electronic Structure of RC-LH1 and LH2 Pigment Assemblies of Purple Bacteria via the EBF-MO Method.
    Shrestha K; Jakubikova E
    J Phys Chem A; 2015 Aug; 119(33):8934-43. PubMed ID: 26215074
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theoretical prediction of spectral and optical properties of bacteriochlorophylls in thermally disordered LH2 antenna complexes.
    Janosi L; Kosztin I; Damjanović A
    J Chem Phys; 2006 Jul; 125(1):014903. PubMed ID: 16863329
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Theoretical description of quantum effects in multi-chromophoric aggregates.
    Zimanyi EN; Silbey RJ
    Philos Trans A Math Phys Eng Sci; 2012 Aug; 370(1972):3620-37. PubMed ID: 22753817
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular basis of the exciton-phonon interactions in the PE545 light-harvesting complex.
    Viani L; Corbella M; Curutchet C; O'Reilly EJ; Olaya-Castro A; Mennucci B
    Phys Chem Chem Phys; 2014 Aug; 16(30):16302-11. PubMed ID: 24978840
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coherence and decoherence in biological systems: principles of noise-assisted transport and the origin of long-lived coherences.
    Chin AW; Huelga SF; Plenio MB
    Philos Trans A Math Phys Eng Sci; 2012 Aug; 370(1972):3638-57. PubMed ID: 22753818
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two-dimensional spectroscopy can distinguish between decoherence and dephasing of zero-quantum coherences.
    Fidler AF; Harel E; Long PD; Engel GS
    J Phys Chem A; 2012 Jan; 116(1):282-9. PubMed ID: 22191993
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Davydov splitting of excitons in cyclic bacteriochlorophyll a nanoaggregates of bacterial light-harvesting complexes between 4.5 and 263 K.
    Pajusalu M; Rätsep M; Trinkunas G; Freiberg A
    Chemphyschem; 2011 Feb; 12(3):634-44. PubMed ID: 21275034
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Fenna-Matthews-Olson protein revisited: a fully polarizable (TD)DFT/MM description.
    Jurinovich S; Curutchet C; Mennucci B
    Chemphyschem; 2014 Oct; 15(15):3194-204. PubMed ID: 25080315
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular Level Design Principle behind Optimal Sizes of Photosynthetic LH2 Complex: Taming Disorder through Cooperation of Hydrogen Bonding and Quantum Delocalization.
    Jang S; Rivera E; Montemayor D
    J Phys Chem Lett; 2015 Mar; 6(6):928-34. PubMed ID: 26262847
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Signatures of correlated excitonic dynamics in two-dimensional spectroscopy of the Fenna-Matthew-Olson photosynthetic complex.
    Caram JR; Lewis NH; Fidler AF; Engel GS
    J Chem Phys; 2012 Mar; 136(10):104505. PubMed ID: 22423846
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein Configuration Landscape Fluctuations Revealed by Exciton Transition Polarizations in Single Light Harvesting Complexes.
    Tubasum S; Torbjörnsson M; Yadav D; Camacho R; Söderlind G; Scheblykin IG; Pullerits T
    J Phys Chem B; 2016 Feb; 120(4):724-32. PubMed ID: 26741912
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantum coherent energy transfer over varying pathways in single light-harvesting complexes.
    Hildner R; Brinks D; Nieder JB; Cogdell RJ; van Hulst NF
    Science; 2013 Jun; 340(6139):1448-51. PubMed ID: 23788794
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Atomistic modeling of two-dimensional electronic spectra and excited-state dynamics for a Light Harvesting 2 complex.
    van der Vegte CP; Prajapati JD; Kleinekathöfer U; Knoester J; Jansen TL
    J Phys Chem B; 2015 Jan; 119(4):1302-13. PubMed ID: 25554919
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unified analysis of ensemble and single-complex optical spectral data from light-harvesting complex-2 chromoproteins for gaining deeper insight into bacterial photosynthesis.
    Pajusalu M; Kunz R; Rätsep M; Timpmann K; Köhler J; Freiberg A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015; 92(5):052709. PubMed ID: 26651725
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.