BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 27223320)

  • 1. Fluorescent 2-Aminopyridine Nucleobases for Triplex-Forming Peptide Nucleic Acids.
    Cheruiyot SK; Rozners E
    Chembiochem; 2016 Aug; 17(16):1558-62. PubMed ID: 27223320
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthetic, Structural, and RNA Binding Studies on 2-Aminopyridine-Modified Triplex-Forming Peptide Nucleic Acids.
    Kotikam V; Kennedy SD; MacKay JA; Rozners E
    Chemistry; 2019 Mar; 25(17):4367-4372. PubMed ID: 30746843
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Triplex-forming peptide nucleic acid modified with 2-aminopyridine as a new tool for detection of A-to-I editing.
    Annoni C; Endoh T; Hnedzko D; Rozners E; Sugimoto N
    Chem Commun (Camb); 2016 Jun; 52(51):7935-8. PubMed ID: 27157071
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis and RNA-Binding Properties of Extended Nucleobases for Triplex-Forming Peptide Nucleic Acids.
    Kumpina I; Brodyagin N; MacKay JA; Kennedy SD; Katkevics M; Rozners E
    J Org Chem; 2019 Nov; 84(21):13276-13298. PubMed ID: 31538780
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The 2-Aminopyridine Nucleobase Improves Triple-Helical Recognition of RNA and DNA When Used Instead of Pseudoisocytosine in Peptide Nucleic Acids.
    Ryan CA; Brodyagin N; Lok J; Rozners E
    Biochemistry; 2021 Jun; 60(24):1919-1925. PubMed ID: 34097400
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using triple-helix-forming Peptide nucleic acids for sequence-selective recognition of double-stranded RNA.
    Hnedzko D; Cheruiyot SK; Rozners E
    Curr Protoc Nucleic Acid Chem; 2014 Sep; 58():4.60.1-23. PubMed ID: 25199637
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nucleobase-Modified Triplex-Forming Peptide Nucleic Acids for Sequence-Specific Recognition of Double-Stranded RNA.
    Brodyagin N; Hnedzko D; MacKay JA; Rozners E
    Methods Mol Biol; 2020; 2105():157-172. PubMed ID: 32088869
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Triple-helical recognition of RNA using 2-aminopyridine-modified PNA at physiologically relevant conditions.
    Zengeya T; Gupta P; Rozners E
    Angew Chem Int Ed Engl; 2012 Dec; 51(50):12593-6. PubMed ID: 23125029
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sequence-selective recognition of double-stranded RNA and enhanced cellular uptake of cationic nucleobase and backbone-modified peptide nucleic acids.
    Hnedzko D; McGee DW; Karamitas YA; Rozners E
    RNA; 2017 Jan; 23(1):58-69. PubMed ID: 27742909
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nucleobase-Modified PNA Suppresses Translation by Forming a Triple Helix with a Hairpin Structure in mRNA In Vitro and in Cells.
    Endoh T; Hnedzko D; Rozners E; Sugimoto N
    Angew Chem Int Ed Engl; 2016 Jan; 55(3):899-903. PubMed ID: 26473504
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Incorporation of thio-pseudoisocytosine into triplex-forming peptide nucleic acids for enhanced recognition of RNA duplexes.
    Devi G; Yuan Z; Lu Y; Zhao Y; Chen G
    Nucleic Acids Res; 2014 Apr; 42(6):4008-18. PubMed ID: 24423869
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved Triplex-Forming Isoorotamide PNA Nucleobases for A-U Recognition of RNA Duplexes.
    Talbott JM; Tessier BR; Harding EE; Walby GD; Hess KJ; Baskevics V; Katkevics M; Rozners E; MacKay JA
    Chemistry; 2023 Nov; 29(64):e202302390. PubMed ID: 37647091
    [TBL] [Abstract][Full Text] [Related]  

  • 13. General Recognition of U-G, U-A, and C-G Pairs by Double-Stranded RNA-Binding PNAs Incorporated with an Artificial Nucleobase.
    Ong AAL; Toh DK; Patil KM; Meng Z; Yuan Z; Krishna MS; Devi G; Haruehanroengra P; Lu Y; Xia K; Okamura K; Sheng J; Chen G
    Biochemistry; 2019 Mar; 58(10):1319-1331. PubMed ID: 30775913
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sequence- And Structure-Specific Probing of RNAs by Short Nucleobase-Modified dsRNA-Binding PNAs Incorporating a Fluorescent Light-up Uracil Analog.
    Krishna MS; Toh DK; Meng Z; Ong AAL; Wang Z; Lu Y; Xia K; Prabakaran M; Chen G
    Anal Chem; 2019 Apr; 91(8):5331-5338. PubMed ID: 30873827
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Triplex-forming PNA modified with unnatural nucleobases: the role of protonation entropy in RNA binding.
    Endoh T; Annoni C; Hnedzko D; Rozners E; Sugimoto N
    Phys Chem Chem Phys; 2016 Nov; 18(47):32002-32006. PubMed ID: 27869270
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sequence-specific recognition of structured RNA by triplex-forming peptide nucleic acids.
    Hnedzko D; Rozners E
    Methods Enzymol; 2019; 623():401-416. PubMed ID: 31239055
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pyridazine Nucleobase in Triplex-Forming PNA Improves Recognition of Cytosine Interruptions of Polypurine Tracts in RNA.
    Brodyagin N; Kumpina I; Applegate J; Katkevics M; Rozners E
    ACS Chem Biol; 2021 May; 16(5):872-881. PubMed ID: 33881836
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Red-emissive triplex-forming PNA probes carrying cyanine base surrogates for fluorescence sensing of double-stranded RNA.
    Chiba T; Sato T; Sato Y; Nishizawa S
    Org Biomol Chem; 2017 Sep; 15(37):7765-7769. PubMed ID: 28905972
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pyrrolidinyl PNA with α/β-Dipeptide Backbone: From Development to Applications.
    Vilaivan T
    Acc Chem Res; 2015 Jun; 48(6):1645-56. PubMed ID: 26022340
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Peptide-nucleic acids (PNAs) with pyrimido[4,5-d]pyrimidine-2,4,5,7-(1H,3H,6H,8H)-tetraone (PPT) as a universal base: their synthesis and binding affinity for oligodeoxyribonucleotides.
    Hirano T; Kuroda K; Kataoka M; Hayakawa Y
    Org Biomol Chem; 2009 Jul; 7(14):2905-11. PubMed ID: 19582300
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.