These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 2722441)

  • 1. Relating the surface properties of intraocular lens materials to endothelial cell adhesion damage.
    Mateo NB; Ratner BD
    Invest Ophthalmol Vis Sci; 1989 May; 30(5):853-60. PubMed ID: 2722441
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Corneal endothelium cell adhesion on intraocular lenses in vitro.
    Arciola CR; Cenni E; Tarabusi C; Caramazza R; Pizzoferrato A
    J Appl Biomater; 1993; 4(3):249-52. PubMed ID: 10146308
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intraocular-lens-endothelial interface: adhesive force measurements.
    Reich S; Levy M; Meshorer A; Blumental M; Yalon M; Sheets JW; Goldberg EP
    J Biomed Mater Res; 1984 Sep; 18(7):737-44. PubMed ID: 6544774
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrathin coating by plasma polymerization applied to corneal contact lens.
    Yasuda H; Bumgarner MO; Marsh HC; Yamanashi BS; Devito DP; Wolbarsht ML; Reed JW; Bessler M; Landers MB; Hercules DM; Carver J
    J Biomed Mater Res; 1975 Nov; 9(6):629-43. PubMed ID: 1184610
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Viability of murine 3T3 fibroblasts on the poly(methyl methacrylate) surface modified by constant UV irradiation].
    Chaberska H; Kaczmarek H; Bazylak G
    Polim Med; 2007; 37(3):13-9. PubMed ID: 18251201
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Corneal epithelial adhesion strength to tethered-protein/peptide modified hydrogel surfaces.
    Wallace C; Jacob JT; Stoltz A; Bi J; Bundy K
    J Biomed Mater Res A; 2005 Jan; 72(1):19-24. PubMed ID: 15534866
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Surface modification of poly methyl methacrylate intraocular lens by alpha-allyl glucoside].
    Qu C; Yao K; Kou R; Xu Z
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2004 Feb; 21(1):115-7. PubMed ID: 15022479
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An evaluation of the biocompatibility of intraocular lenses.
    Majima K
    Ophthalmic Surg Lasers; 1996 Nov; 27(11):946-51. PubMed ID: 8938804
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An in vitro study of human lens epithelial cell adhesion to intraocular lenses with and without a fibronectin coating.
    Cooke CA; McGimpsey S; Mahon G; Best RM
    Invest Ophthalmol Vis Sci; 2006 Jul; 47(7):2985-9. PubMed ID: 16799043
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vitronectin is significant in the adhesion of lens epithelial cells to PMMA polymers.
    Evans MD; Pavon-Djavid G; Hélary G; Legeais JM; Migonney V
    J Biomed Mater Res A; 2004 Jun; 69(3):469-76. PubMed ID: 15127394
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of intraocular lenses on the corneal endothelium.
    Kaufman HE; Katz JI
    Trans Ophthalmol Soc U K (1962); 1977 Jul; 97(2):265-7. PubMed ID: 273337
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improvement of the surface biocompatibility of silicone intraocular lens by the plasma-induced tethering of phospholipid moieties.
    Yao K; Huang XD; Huang XJ; Xu ZK
    J Biomed Mater Res A; 2006 Sep; 78(4):684-92. PubMed ID: 16739174
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intraocular lens changes after short- and long-term exposure to intraocular silicone oil. An in vivo study.
    Khawly JA; Lambert RJ; Jaffe GJ
    Ophthalmology; 1998 Jul; 105(7):1227-33. PubMed ID: 9663226
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plasma modification of PMMA films: surface free energy and cell-attachment studies.
    Ozcan C; Hasirci N
    J Biomater Sci Polym Ed; 2007; 18(6):759-73. PubMed ID: 17623556
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Poly(dimethylsiloxane)-poly(ethylene oxide)-heparin block copolymers. II: Surface characterization and in vitro assessments.
    Grainger DW; Knutson K; Kim SW; Feijen J
    J Biomed Mater Res; 1990 Apr; 24(4):403-31. PubMed ID: 2347871
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Endothelial damage from intraocular lens insertion.
    Kaufman E; Katz JI
    Invest Ophthalmol; 1976 Dec; 15(12):996-1000. PubMed ID: 992965
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of intraocular lens surface properties with atomic force microscopy.
    Lombardo M; De Santo MP; Lombardo G; Barberi R; Serrao S
    J Cataract Refract Surg; 2006 Aug; 32(8):1378-84. PubMed ID: 16863979
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [A new material for intraocular implant].
    Legeais JM; Werner L; Briat B; Renard G
    J Fr Ophtalmol; 1997; 20(7):527-33. PubMed ID: 9499977
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects on the surrounding tissues and morphological changes of components after implantation of PMMA and heparin surface modified PMMA intraocular lens in rabbit eyes.
    Kim MS; Rhee SW
    Korean J Ophthalmol; 1990 Dec; 4(2):73-81. PubMed ID: 2092164
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved performances of intraocular lenses by poly(ethylene glycol) chemical coatings.
    Bozukova D; Pagnoulle C; De Pauw-Gillet MC; Desbief S; Lazzaroni R; Ruth N; Jérôme R; Jérôme C
    Biomacromolecules; 2007 Aug; 8(8):2379-87. PubMed ID: 17608449
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.