BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 27225325)

  • 1. Bayesian model selection in logistic regression for the detection of adverse drug reactions.
    Marbac M; Tubert-Bitter P; Sedki M
    Biom J; 2016 Nov; 58(6):1376-1389. PubMed ID: 27225325
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Class-imbalanced subsampling lasso algorithm for discovering adverse drug reactions.
    Ahmed I; Pariente A; Tubert-Bitter P
    Stat Methods Med Res; 2018 Mar; 27(3):785-797. PubMed ID: 27114328
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New adaptive lasso approaches for variable selection in automated pharmacovigilance signal detection.
    Courtois É; Tubert-Bitter P; Ahmed I
    BMC Med Res Methodol; 2021 Dec; 21(1):271. PubMed ID: 34852782
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A conceptual approach to the masking effect of measures of disproportionality.
    Maignen F; Hauben M; Hung E; Holle LV; Dogne JM
    Pharmacoepidemiol Drug Saf; 2014 Feb; 23(2):208-17. PubMed ID: 24243699
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessing the extent and impact of the masking effect of disproportionality analyses on two spontaneous reporting systems databases.
    Maignen F; Hauben M; Hung E; Van Holle L; Dogne JM
    Pharmacoepidemiol Drug Saf; 2014 Feb; 23(2):195-207. PubMed ID: 24243665
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Statistical and graphical approaches for disproportionality analysis of spontaneously-reported adverse events in pharmacovigilance.
    Zink RC; Huang Q; Zhang LY; Bao WJ
    Chin J Nat Med; 2013 May; 11(3):314-20. PubMed ID: 23725848
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A prediction model-based algorithm for computer-assisted database screening of adverse drug reactions in the Netherlands.
    Scholl JHG; van Hunsel FPAM; Hak E; van Puijenbroek EP
    Pharmacoepidemiol Drug Saf; 2018 Feb; 27(2):199-205. PubMed ID: 29271017
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploration of statistical shrinkage parameters of disproportionality methods in spontaneous reporting system of China.
    Wang J; Ye XF; Guo XJ; Zhu TT; Qi N; Hou YF; Zhang TY; Shi WT; Wei X; Liu YZ; Wu GZ; He J
    Pharmacoepidemiol Drug Saf; 2015 Sep; 24(9):962-70. PubMed ID: 26095121
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Comparison Study of Algorithms to Detect Drug-Adverse Event Associations: Frequentist, Bayesian, and Machine-Learning Approaches.
    Pham M; Cheng F; Ramachandran K
    Drug Saf; 2019 Jun; 42(6):743-750. PubMed ID: 30762164
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative performance of two quantitative safety signalling methods: implications for use in a pharmacovigilance department.
    Almenoff JS; LaCroix KK; Yuen NA; Fram D; DuMouchel W
    Drug Saf; 2006; 29(10):875-87. PubMed ID: 16970511
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The value of time-to-onset in statistical signal detection of adverse drug reactions: a comparison with disproportionality analysis in spontaneous reports from the Netherlands.
    Scholl JH; van Puijenbroek EP
    Pharmacoepidemiol Drug Saf; 2016 Dec; 25(12):1361-1367. PubMed ID: 27686554
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pharmacoepidemiology and its input to pharmacovigilance.
    Faillie JL; Montastruc F; Montastruc JL; Pariente A
    Therapie; 2016 Apr; 71(2):211-6. PubMed ID: 27080840
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mining association patterns of drug-interactions using post marketing FDA's spontaneous reporting data.
    Ibrahim H; Saad A; Abdo A; Sharaf Eldin A
    J Biomed Inform; 2016 Apr; 60():294-308. PubMed ID: 26903152
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of statistical signal detection methods within and across spontaneous reporting databases.
    Candore G; Juhlin K; Manlik K; Thakrar B; Quarcoo N; Seabroke S; Wisniewski A; Slattery J
    Drug Saf; 2015 Jun; 38(6):577-87. PubMed ID: 25899605
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Propensity Score-Based Approaches in High Dimension for Pharmacovigilance Signal Detection: an Empirical Comparison on the French Spontaneous Reporting Database.
    Courtois É; Pariente A; Salvo F; Volatier É; Tubert-Bitter P; Ahmed I
    Front Pharmacol; 2018; 9():1010. PubMed ID: 30279658
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interest of pharmacoepidemiology for pharmacodynamics and analysis of the mechanism of action of drugs.
    Lapeyre-Mestre M; Montastruc F
    Therapie; 2019 Apr; 74(2):209-214. PubMed ID: 30792079
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mining pharmacovigilance data using Bayesian logistic regression with James-Stein type shrinkage estimation.
    An L; Fung KY; Krewski D
    J Biopharm Stat; 2010 Sep; 20(5):998-1012. PubMed ID: 20721787
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of three methods (consensual expert judgement, algorithmic and probabilistic approaches) of causality assessment of adverse drug reactions: an assessment using reports made to a French pharmacovigilance centre.
    Théophile H; Arimone Y; Miremont-Salamé G; Moore N; Fourrier-Réglat A; Haramburu F; Bégaud B
    Drug Saf; 2010 Nov; 33(11):1045-54. PubMed ID: 20925441
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sequence symmetry analysis in pharmacovigilance and pharmacoepidemiologic studies.
    Lai EC; Pratt N; Hsieh CY; Lin SJ; Pottegård A; Roughead EE; Kao Yang YH; Hallas J
    Eur J Epidemiol; 2017 Jul; 32(7):567-582. PubMed ID: 28698923
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Signal detection on spontaneous reports of adverse events following immunisation: a comparison of the performance of a disproportionality-based algorithm and a time-to-onset-based algorithm.
    van Holle L; Bauchau V
    Pharmacoepidemiol Drug Saf; 2014 Feb; 23(2):178-85. PubMed ID: 24038719
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.