These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 27225325)
1. Bayesian model selection in logistic regression for the detection of adverse drug reactions. Marbac M; Tubert-Bitter P; Sedki M Biom J; 2016 Nov; 58(6):1376-1389. PubMed ID: 27225325 [TBL] [Abstract][Full Text] [Related]
2. Class-imbalanced subsampling lasso algorithm for discovering adverse drug reactions. Ahmed I; Pariente A; Tubert-Bitter P Stat Methods Med Res; 2018 Mar; 27(3):785-797. PubMed ID: 27114328 [TBL] [Abstract][Full Text] [Related]
3. New adaptive lasso approaches for variable selection in automated pharmacovigilance signal detection. Courtois É; Tubert-Bitter P; Ahmed I BMC Med Res Methodol; 2021 Dec; 21(1):271. PubMed ID: 34852782 [TBL] [Abstract][Full Text] [Related]
4. A conceptual approach to the masking effect of measures of disproportionality. Maignen F; Hauben M; Hung E; Holle LV; Dogne JM Pharmacoepidemiol Drug Saf; 2014 Feb; 23(2):208-17. PubMed ID: 24243699 [TBL] [Abstract][Full Text] [Related]
5. Assessing the extent and impact of the masking effect of disproportionality analyses on two spontaneous reporting systems databases. Maignen F; Hauben M; Hung E; Van Holle L; Dogne JM Pharmacoepidemiol Drug Saf; 2014 Feb; 23(2):195-207. PubMed ID: 24243665 [TBL] [Abstract][Full Text] [Related]
6. Statistical and graphical approaches for disproportionality analysis of spontaneously-reported adverse events in pharmacovigilance. Zink RC; Huang Q; Zhang LY; Bao WJ Chin J Nat Med; 2013 May; 11(3):314-20. PubMed ID: 23725848 [TBL] [Abstract][Full Text] [Related]
7. A prediction model-based algorithm for computer-assisted database screening of adverse drug reactions in the Netherlands. Scholl JHG; van Hunsel FPAM; Hak E; van Puijenbroek EP Pharmacoepidemiol Drug Saf; 2018 Feb; 27(2):199-205. PubMed ID: 29271017 [TBL] [Abstract][Full Text] [Related]
8. Exploration of statistical shrinkage parameters of disproportionality methods in spontaneous reporting system of China. Wang J; Ye XF; Guo XJ; Zhu TT; Qi N; Hou YF; Zhang TY; Shi WT; Wei X; Liu YZ; Wu GZ; He J Pharmacoepidemiol Drug Saf; 2015 Sep; 24(9):962-70. PubMed ID: 26095121 [TBL] [Abstract][Full Text] [Related]
9. A Comparison Study of Algorithms to Detect Drug-Adverse Event Associations: Frequentist, Bayesian, and Machine-Learning Approaches. Pham M; Cheng F; Ramachandran K Drug Saf; 2019 Jun; 42(6):743-750. PubMed ID: 30762164 [TBL] [Abstract][Full Text] [Related]
10. Comparative performance of two quantitative safety signalling methods: implications for use in a pharmacovigilance department. Almenoff JS; LaCroix KK; Yuen NA; Fram D; DuMouchel W Drug Saf; 2006; 29(10):875-87. PubMed ID: 16970511 [TBL] [Abstract][Full Text] [Related]
11. The value of time-to-onset in statistical signal detection of adverse drug reactions: a comparison with disproportionality analysis in spontaneous reports from the Netherlands. Scholl JH; van Puijenbroek EP Pharmacoepidemiol Drug Saf; 2016 Dec; 25(12):1361-1367. PubMed ID: 27686554 [TBL] [Abstract][Full Text] [Related]
12. Pharmacoepidemiology and its input to pharmacovigilance. Faillie JL; Montastruc F; Montastruc JL; Pariente A Therapie; 2016 Apr; 71(2):211-6. PubMed ID: 27080840 [TBL] [Abstract][Full Text] [Related]
13. Mining association patterns of drug-interactions using post marketing FDA's spontaneous reporting data. Ibrahim H; Saad A; Abdo A; Sharaf Eldin A J Biomed Inform; 2016 Apr; 60():294-308. PubMed ID: 26903152 [TBL] [Abstract][Full Text] [Related]
14. Comparison of statistical signal detection methods within and across spontaneous reporting databases. Candore G; Juhlin K; Manlik K; Thakrar B; Quarcoo N; Seabroke S; Wisniewski A; Slattery J Drug Saf; 2015 Jun; 38(6):577-87. PubMed ID: 25899605 [TBL] [Abstract][Full Text] [Related]
15. Propensity Score-Based Approaches in High Dimension for Pharmacovigilance Signal Detection: an Empirical Comparison on the French Spontaneous Reporting Database. Courtois É; Pariente A; Salvo F; Volatier É; Tubert-Bitter P; Ahmed I Front Pharmacol; 2018; 9():1010. PubMed ID: 30279658 [TBL] [Abstract][Full Text] [Related]
16. Interest of pharmacoepidemiology for pharmacodynamics and analysis of the mechanism of action of drugs. Lapeyre-Mestre M; Montastruc F Therapie; 2019 Apr; 74(2):209-214. PubMed ID: 30792079 [TBL] [Abstract][Full Text] [Related]
17. Mining pharmacovigilance data using Bayesian logistic regression with James-Stein type shrinkage estimation. An L; Fung KY; Krewski D J Biopharm Stat; 2010 Sep; 20(5):998-1012. PubMed ID: 20721787 [TBL] [Abstract][Full Text] [Related]
18. Comparison of three methods (consensual expert judgement, algorithmic and probabilistic approaches) of causality assessment of adverse drug reactions: an assessment using reports made to a French pharmacovigilance centre. Théophile H; Arimone Y; Miremont-Salamé G; Moore N; Fourrier-Réglat A; Haramburu F; Bégaud B Drug Saf; 2010 Nov; 33(11):1045-54. PubMed ID: 20925441 [TBL] [Abstract][Full Text] [Related]
19. Sequence symmetry analysis in pharmacovigilance and pharmacoepidemiologic studies. Lai EC; Pratt N; Hsieh CY; Lin SJ; Pottegård A; Roughead EE; Kao Yang YH; Hallas J Eur J Epidemiol; 2017 Jul; 32(7):567-582. PubMed ID: 28698923 [TBL] [Abstract][Full Text] [Related]
20. Signal detection on spontaneous reports of adverse events following immunisation: a comparison of the performance of a disproportionality-based algorithm and a time-to-onset-based algorithm. van Holle L; Bauchau V Pharmacoepidemiol Drug Saf; 2014 Feb; 23(2):178-85. PubMed ID: 24038719 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]