These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 27225539)

  • 1. Synthetic Sensors for Reactive Oxygen Species Detection and Quantification: A Critical Review of Current Methods.
    Ribou AC
    Antioxid Redox Signal; 2016 Sep; 25(9):520-33. PubMed ID: 27225539
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electron Paramagnetic Resonance Measurements of Reactive Oxygen Species by Cyclic Hydroxylamine Spin Probes.
    Dikalov SI; Polienko YF; Kirilyuk I
    Antioxid Redox Signal; 2018 May; 28(15):1433-1443. PubMed ID: 29037084
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Challenges and Opportunities for Small-Molecule Fluorescent Probes in Redox Biology Applications.
    Jiang X; Wang L; Carroll SL; Chen J; Wang MC; Wang J
    Antioxid Redox Signal; 2018 Aug; 29(6):518-540. PubMed ID: 29320869
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Methods for detection of mitochondrial and cellular reactive oxygen species.
    Dikalov SI; Harrison DG
    Antioxid Redox Signal; 2014 Jan; 20(2):372-82. PubMed ID: 22978713
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Environmental Effects on Reactive Oxygen Species Detection-Learning from the Phagosome.
    Nault L; Bouchab L; Dupré-Crochet S; Nüße O; Erard M
    Antioxid Redox Signal; 2016 Oct; 25(10):564-76. PubMed ID: 27225344
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Redox Indicator Mice Stably Expressing Genetically Encoded Neuronal roGFP: Versatile Tools to Decipher Subcellular Redox Dynamics in Neuropathophysiology.
    Wagener KC; Kolbrink B; Dietrich K; Kizina KM; Terwitte LS; Kempkes B; Bao G; Müller M
    Antioxid Redox Signal; 2016 Jul; 25(1):41-58. PubMed ID: 27059697
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetically encoded fluorescent redox sensors.
    Lukyanov KA; Belousov VV
    Biochim Biophys Acta; 2014 Feb; 1840(2):745-56. PubMed ID: 23726987
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cytometric assessment of mitochondria using fluorescent probes.
    Cottet-Rousselle C; Ronot X; Leverve X; Mayol JF
    Cytometry A; 2011 Jun; 79(6):405-25. PubMed ID: 21595013
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detection of Hydrogen Peroxide with Fluorescent Dyes.
    Rezende F; Brandes RP; Schröder K
    Antioxid Redox Signal; 2018 Aug; 29(6):585-602. PubMed ID: 29054131
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetically encoded reactive oxygen species (ROS) and redox indicators.
    Pouvreau S
    Biotechnol J; 2014 Feb; 9(2):282-93. PubMed ID: 24497389
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Techniques for Detecting Reactive Oxygen Species in Pulmonary Vasculature Redox Signaling.
    Xu Y; Qian S
    Adv Exp Med Biol; 2017; 967():361-372. PubMed ID: 29047099
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Beyond the Cuvette: Redox Indicators in Biological Experiments.
    Pouvreau S
    Antioxid Redox Signal; 2016 Sep; 25(9):517-9. PubMed ID: 27418437
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Live-cell imaging approaches for the investigation of xenobiotic-induced oxidant stress.
    Wages PA; Cheng WY; Gibbs-Flournoy E; Samet JM
    Biochim Biophys Acta; 2016 Dec; 1860(12):2802-15. PubMed ID: 27208426
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Studies of Hematopoietic Cell Differentiation with a Ratiometric and Reversible Sensor of Mitochondrial Reactive Oxygen Species.
    Kaur A; Jankowska K; Pilgrim C; Fraser ST; New EJ
    Antioxid Redox Signal; 2016 May; 24(13):667-79. PubMed ID: 26865422
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selective and Reversible Approaches Toward Imaging Redox Signaling Using Small-Molecule Probes.
    Kolanowski JL; Kaur A; New EJ
    Antioxid Redox Signal; 2016 May; 24(13):713-30. PubMed ID: 26607478
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluorescent in vivo imaging of reactive oxygen species and redox potential in plants.
    Ortega-Villasante C; Burén S; Blázquez-Castro A; Barón-Sola Á; Hernández LE
    Free Radic Biol Med; 2018 Jul; 122():202-220. PubMed ID: 29627452
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vivo ROS and redox potential fluorescent detection in plants: Present approaches and future perspectives.
    Ortega-Villasante C; Burén S; Barón-Sola Á; Martínez F; Hernández LE
    Methods; 2016 Oct; 109():92-104. PubMed ID: 27424086
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biosensors for spatiotemporal detection of reactive oxygen species in cells and tissues.
    Erard M; Dupré-Crochet S; Nüße O
    Am J Physiol Regul Integr Comp Physiol; 2018 May; 314(5):R667-R683. PubMed ID: 29341828
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetically encoded redox sensors.
    Chiu WK; Towheed A; Palladino MJ
    Methods Enzymol; 2014; 542():263-87. PubMed ID: 24862271
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vivo imaging of Ca2+, pH, and reactive oxygen species using fluorescent probes in plants.
    Swanson SJ; Choi WG; Chanoca A; Gilroy S
    Annu Rev Plant Biol; 2011; 62():273-97. PubMed ID: 21370977
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.