BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 27225540)

  • 1. Environmental Fate of Chiral Herbicide Fenoxaprop-ethyl in Water-Sediment Microcosms.
    Jing X; Yao G; Liu D; Liu M; Wang P; Zhou Z
    Sci Rep; 2016 May; 6():26797. PubMed ID: 27225540
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The enantioselective enrichment, metabolism, and toxicity of fenoxaprop-ethyl and its metabolites in zebrafish.
    Xu Y; Jing X; Zhai W; Li X
    Chirality; 2020 Jul; 32(7):990-997. PubMed ID: 32196770
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enantioselective environmental behavior of the chiral herbicide fenoxaprop-ethyl and its chiral metabolite fenoxaprop in soil.
    Zhang Y; Liu D; Diao J; He Z; Zhou Z; Wang P; Li X
    J Agric Food Chem; 2010 Dec; 58(24):12878-84. PubMed ID: 21121654
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolution of toxicity upon hydrolysis of fenoxaprop-p-ethyl.
    Lin J; Chen J; Cai X; Qiao X; Huang L; Wang D; Wang Z
    J Agric Food Chem; 2007 Sep; 55(18):7626-9. PubMed ID: 17685541
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fate and stereoselective behavior of benalaxyl in a water-sediment microcosm.
    Liu M; Liu D; Xu Y; Jing X; Zhou Z; Wang P
    J Agric Food Chem; 2015 Jun; 63(21):5205-11. PubMed ID: 26009811
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exposure of frogs and tadpoles to chiral herbicide fenoxaprop-ethyl.
    Jing X; Yao G; Liu D; Liu C; Wang F; Wang P; Zhou Z
    Chemosphere; 2017 Nov; 186():832-838. PubMed ID: 28826131
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stereoselective metabolism of fenoxaprop-ethyl and its chiral metabolite fenoxaprop in rabbits.
    Zhang Y; Li X; Shen Z; Xu X; Zhang P; Wang P; Zhou Z
    Chirality; 2011 Nov; 23(10):897-903. PubMed ID: 21935987
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The enantioselective environmental fate of mandipropamid in water-sediment microcosms: Distribution, degradation, degradation pathways and toxicity assessment.
    Zhang J; Li Y; Tan Y; Zhang Y; Li R; Zhou L; Wang M
    Sci Total Environ; 2023 Sep; 891():164650. PubMed ID: 37285990
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of biochar on the fate and toxicity of herbicide fenoxaprop-ethyl in soil.
    Jing X; Wang T; Yang J; Wang Y; Xu H
    R Soc Open Sci; 2018 May; 5(5):171875. PubMed ID: 29892380
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stereoselective environmental fate of fosthiazate in soil and water-sediment microcosms.
    Li L; Sun X; Lv B; Xu J; Zhang J; Gao Y; Gao B; Shi H; Wang M
    Environ Res; 2021 Mar; 194():110696. PubMed ID: 33385383
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Persistence of herbicide fenoxaprop ethyl and its acid metabolite in soil and wheat crop under Indian tropical conditions.
    Singh SB; Das TK; Kulshrestha G
    J Environ Sci Health B; 2013; 48(5):324-30. PubMed ID: 23431970
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of pH on chemical stability and de-esterification of fenoxaprop-ethyl by purified enzymes, bacterial extracts, and soils.
    Zablotowicz RM; Hoagland RE; Staddon WJ; Locke MA
    J Agric Food Chem; 2000 Oct; 48(10):4711-6. PubMed ID: 11052722
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of fenoxaprop-p-ethyl on natural plankton of the Seyhan Dam: a microcosm study.
    Cevik F; Tutar M
    Bull Environ Contam Toxicol; 2008 Mar; 80(3):247-50. PubMed ID: 18193365
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of toxicity and dissipation of racemic fenoxaprop and its R-enantiomer in Scenedesmus obliquus suspension by cyclodextrins.
    Zhang A; Xu C; Liu W
    J Environ Sci Health B; 2008; 43(3):231-6. PubMed ID: 18368543
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of microplastics on behaviors of chiral imidazolinone herbicides in the aquatic environment: Residue, degradation and distribution.
    Hu M; Hou N; Li Y; Liu Y; Zhang H; Zeng D; Tan H
    J Hazard Mater; 2021 Sep; 418():126176. PubMed ID: 34102352
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biodegradation of fenoxaprop-p-ethyl by bacteria isolated from sludge.
    Song L; Hua R; Zhao Y
    J Hazard Mater; 2005 Feb; 118(1-3):247-51. PubMed ID: 15721550
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Production of monoclonal antibody to herbicide fenoxaprop-ethyl.
    Cui Y; Nan T; Tan G; Li QX; Wang B; Liu S
    Hybridoma (Larchmt); 2011 Oct; 30(5):463-7. PubMed ID: 22008074
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification and expression of main genes involved in non-target site resistance mechanisms to fenoxaprop-p-ethyl in Beckmannia syzigachne.
    Bai S; Zhao Y; Zhou Y; Wang M; Li Y; Luo X; Li L
    Pest Manag Sci; 2020 Aug; 76(8):2619-2626. PubMed ID: 32083373
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Late watergrass (Echinochloa phyllopogon): mechanisms involved in the resistance to fenoxaprop-p-ethyl.
    Bakkali Y; Ruiz-Santaella JP; Osuna MD; Wagner J; Fischer AJ; De Prado R
    J Agric Food Chem; 2007 May; 55(10):4052-8. PubMed ID: 17439229
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expression Pattern of Entire Cytochrome P450 Genes and Response of Defenses in a Metabolic-Herbicide-Resistant Biotype of
    Yang J; Jiang M; Jia S; Liao M; Cao H; Zhao N
    Front Plant Sci; 2022; 13():868807. PubMed ID: 35401603
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.