BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

512 related articles for article (PubMed ID: 27225763)

  • 1. Synapse Formation in Monosynaptic Sensory-Motor Connections Is Regulated by Presynaptic Rho GTPase Cdc42.
    Imai F; Ladle DR; Leslie JR; Duan X; Rizvi TA; Ciraolo GM; Zheng Y; Yoshida Y
    J Neurosci; 2016 May; 36(21):5724-35. PubMed ID: 27225763
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Requirement for Dicer in Maintenance of Monosynaptic Sensory-Motor Circuits in the Spinal Cord.
    Imai F; Chen X; Weirauch MT; Yoshida Y
    Cell Rep; 2016 Nov; 17(9):2163-2172. PubMed ID: 27880894
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular mechanisms underlying monosynaptic sensory-motor circuit development in the spinal cord.
    Imai F; Yoshida Y
    Dev Dyn; 2018 Apr; 247(4):581-587. PubMed ID: 29226492
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unique versus Redundant Functions of Neuroligin Genes in Shaping Excitatory and Inhibitory Synapse Properties.
    Chanda S; Hale WD; Zhang B; Wernig M; Südhof TC
    J Neurosci; 2017 Jul; 37(29):6816-6836. PubMed ID: 28607166
    [TBL] [Abstract][Full Text] [Related]  

  • 5. HoxD transcription factors define monosynaptic sensory-motor specificity in the developing spinal cord.
    Imai F; Adam M; Potter SS; Yoshida Y
    Development; 2021 Jun; 148(12):. PubMed ID: 34128984
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Early postnatal development of GABAergic presynaptic inhibition of Ia proprioceptive afferent connections in mouse spinal cord.
    Sonner PM; Ladle DR
    J Neurophysiol; 2013 Apr; 109(8):2118-28. PubMed ID: 23343895
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tissue engineering the monosynaptic circuit of the stretch reflex arc with co-culture of embryonic motoneurons and proprioceptive sensory neurons.
    Guo X; Ayala JE; Gonzalez M; Stancescu M; Lambert S; Hickman JJ
    Biomaterials; 2012 Aug; 33(23):5723-31. PubMed ID: 22594977
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Serotonin-induced regulation of the actin network for learning-related synaptic growth requires Cdc42, N-WASP, and PAK in Aplysia sensory neurons.
    Udo H; Jin I; Kim JH; Li HL; Youn T; Hawkins RD; Kandel ER; Bailey CH
    Neuron; 2005 Mar; 45(6):887-901. PubMed ID: 15797550
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of primary afferents in the developmental regulation of motor axon synapse numbers on Renshaw cells.
    Siembab VC; Gomez-Perez L; Rotterman TM; Shneider NA; Alvarez FJ
    J Comp Neurol; 2016 Jun; 524(9):1892-919. PubMed ID: 26660356
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A correlative physiological and morphological analysis of monosynaptically connected propriospinal axon-motoneuron pairs in the lumbar spinal cord of frogs.
    Dityatev A; Birinyi A; Puskár Z; Antal M; Clamann HP
    Neuroscience; 2001; 106(2):405-17. PubMed ID: 11566510
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ephexin1 Is Required for Eph-Mediated Limb Trajectory of Spinal Motor Axons.
    Chang CJ; Chang MY; Chou SY; Huang CC; Chuang JY; Hsu TI; Chang HF; Wu YH; Wu CC; Morales D; Kania A; Kao TJ
    J Neurosci; 2018 Feb; 38(8):2043-2056. PubMed ID: 29363583
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Positional Strategies for Connection Specificity and Synaptic Organization in Spinal Sensory-Motor Circuits.
    Balaskas N; Abbott LF; Jessell TM; Ng D
    Neuron; 2019 Jun; 102(6):1143-1156.e4. PubMed ID: 31076274
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expression of the immunoglobulin superfamily cell adhesion molecules in the developing spinal cord and dorsal root ganglion.
    Gu Z; Imai F; Kim IJ; Fujita H; Katayama Ki; Mori K; Yoshihara Y; Yoshida Y
    PLoS One; 2015; 10(3):e0121550. PubMed ID: 25826454
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Descending Systems Direct Development of Key Spinal Motor Circuits.
    Smith CC; Paton JFR; Chakrabarty S; Ichiyama RM
    J Neurosci; 2017 Jun; 37(26):6372-6387. PubMed ID: 28576940
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Loss of ETV1/ER81 in motor neurons leads to reduced monosynaptic inputs from proprioceptive sensory neurons.
    Ladle DR; Hippenmeyer S
    J Neurophysiol; 2023 Jan; ():. PubMed ID: 36695533
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Control of transmission in muscle group IA afferents during fictive locomotion in the cat.
    Gossard JP
    J Neurophysiol; 1996 Dec; 76(6):4104-12. PubMed ID: 8985904
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sensory-Derived Glutamate Regulates Presynaptic Inhibitory Terminals in Mouse Spinal Cord.
    Mende M; Fletcher EV; Belluardo JL; Pierce JP; Bommareddy PK; Weinrich JA; Kabir ZD; Schierberl KC; Pagiazitis JG; Mendelsohn AI; Francesconi A; Edwards RH; Milner TA; Rajadhyaksha AM; van Roessel PJ; Mentis GZ; Kaltschmidt JA
    Neuron; 2016 Jun; 90(6):1189-1202. PubMed ID: 27263971
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of motoneuron-derived neurotrophin 3 in survival and axonal projection of sensory neurons during neural circuit formation.
    Usui N; Watanabe K; Ono K; Tomita K; Tamamaki N; Ikenaka K; Takebayashi H
    Development; 2012 Mar; 139(6):1125-32. PubMed ID: 22318233
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Postsynaptic regulation of the development and long-term plasticity of Aplysia sensorimotor synapses in cell culture.
    Glanzman DL
    J Neurobiol; 1994 Jun; 25(6):666-93. PubMed ID: 8071666
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Target-dependent release of a presynaptic neuropeptide regulates the formation and maturation of specific synapses in Aplysia.
    Hu JY; Goldman J; Wu F; Schacher S
    J Neurosci; 2004 Nov; 24(44):9933-43. PubMed ID: 15525778
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.