These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 27226046)
1. CuO Nanoparticle Interaction with Arabidopsis thaliana: Toxicity, Parent-Progeny Transfer, and Gene Expression. Wang Z; Xu L; Zhao J; Wang X; White JC; Xing B Environ Sci Technol; 2016 Jun; 50(11):6008-16. PubMed ID: 27226046 [TBL] [Abstract][Full Text] [Related]
2. Oxidative stress-induced toxicity of CuO nanoparticles and related toxicogenomic responses in Arabidopsis thaliana. Tang Y; He R; Zhao J; Nie G; Xu L; Xing B Environ Pollut; 2016 May; 212():605-614. PubMed ID: 27016889 [TBL] [Abstract][Full Text] [Related]
3. Phytotoxicity and accumulation of copper oxide nanoparticles to the Cu-tolerant plant Elsholtzia splendens. Shi J; Peng C; Yang Y; Yang J; Zhang H; Yuan X; Chen Y; Hu T Nanotoxicology; 2014 Mar; 8(2):179-88. PubMed ID: 23311584 [TBL] [Abstract][Full Text] [Related]
4. SELDI-TOF MS-based discovery of a biomarker in Cucumis sativus seeds exposed to CuO nanoparticles. Moon YS; Park ES; Kim TO; Lee HS; Lee SE Environ Toxicol Pharmacol; 2014 Nov; 38(3):922-31. PubMed ID: 25461552 [TBL] [Abstract][Full Text] [Related]
5. Xylem- and phloem-based transport of CuO nanoparticles in maize (Zea mays L.). Wang Z; Xie X; Zhao J; Liu X; Feng W; White JC; Xing B Environ Sci Technol; 2012 Apr; 46(8):4434-41. PubMed ID: 22435775 [TBL] [Abstract][Full Text] [Related]
6. Uptake, Distribution, and Transformation of CuO NPs in a Floating Plant Eichhornia crassipes and Related Stomatal Responses. Zhao J; Ren W; Dai Y; Liu L; Wang Z; Yu X; Zhang J; Wang X; Xing B Environ Sci Technol; 2017 Jul; 51(13):7686-7695. PubMed ID: 28586199 [TBL] [Abstract][Full Text] [Related]
7. Copper oxide nanoparticles alter cellular morphology via disturbing the actin cytoskeleton dynamics in Jia H; Chen S; Wang X; Shi C; Liu K; Zhang S; Li J Nanotoxicology; 2020 Feb; 14(1):127-144. PubMed ID: 31684790 [TBL] [Abstract][Full Text] [Related]
8. The effect of CuO NPs on reactive oxygen species and cell cycle gene expression in roots of rice. Wang S; Liu H; Zhang Y; Xin H Environ Toxicol Chem; 2015 Mar; 34(3):554-61. PubMed ID: 25475023 [TBL] [Abstract][Full Text] [Related]
9. Translocation and biotransformation of CuO nanoparticles in rice (Oryza sativa L.) plants. Peng C; Duan D; Xu C; Chen Y; Sun L; Zhang H; Yuan X; Zheng L; Yang Y; Yang J; Zhen X; Chen Y; Shi J Environ Pollut; 2015 Feb; 197():99-107. PubMed ID: 25521412 [TBL] [Abstract][Full Text] [Related]
10. Soil and foliar exposure of soybean (Glycine max) to Cu: Nanoparticle coating-dependent plant responses. Deng C; Wang Y; Cantu JM; Valdes C; Navarro G; Cota-Ruiz K; Hernandez-Viezcas JA; Li C; Elmer WH; Dimkpa CO; White JC; Gardea-Torresdey JL NanoImpact; 2022 Apr; 26():100406. PubMed ID: 35588596 [TBL] [Abstract][Full Text] [Related]
11. Weathering in soil increases nanoparticle CuO bioaccumulation within a terrestrial food chain. Servin AD; Pagano L; Castillo-Michel H; De la Torre-Roche R; Hawthorne J; Hernandez-Viezcas JA; Loredo-Portales R; Majumdar S; Gardea-Torresday J; Dhankher OP; White JC Nanotoxicology; 2017 Feb; 11(1):98-111. PubMed ID: 28024451 [TBL] [Abstract][Full Text] [Related]
12. Transcriptomic Response of Arabidopsis thaliana Exposed to CuO Nanoparticles, Bulk Material, and Ionic Copper. Landa P; Dytrych P; Prerostova S; Petrova S; Vankova R; Vanek T Environ Sci Technol; 2017 Sep; 51(18):10814-10824. PubMed ID: 28832134 [TBL] [Abstract][Full Text] [Related]
13. CuO Nanoparticles Inhibited Root Growth from Brassica nigra Seedlings but Induced Root from Stem and Leaf Explants. Zafar H; Ali A; Zia M Appl Biochem Biotechnol; 2017 Jan; 181(1):365-378. PubMed ID: 27562818 [TBL] [Abstract][Full Text] [Related]
14. Effect of different copper oxide particles on cell division and related genes of soybean roots. Liu C; Yu Y; Liu H; Xin H Plant Physiol Biochem; 2021 Jun; 163():205-214. PubMed ID: 33862500 [TBL] [Abstract][Full Text] [Related]
15. CuO nanoparticle interaction with human epithelial cells: cellular uptake, location, export, and genotoxicity. Wang Z; Li N; Zhao J; White JC; Qu P; Xing B Chem Res Toxicol; 2012 Jul; 25(7):1512-21. PubMed ID: 22686560 [TBL] [Abstract][Full Text] [Related]
16. Assessment of the toxicity of CuO nanoparticles by using Saccharomyces cerevisiae mutants with multiple genes deleted. Bao S; Lu Q; Fang T; Dai H; Zhang C Appl Environ Microbiol; 2015 Dec; 81(23):8098-107. PubMed ID: 26386067 [TBL] [Abstract][Full Text] [Related]
17. X-ray Spectroscopy Uncovering the Effects of Cu Based Nanoparticle Concentration and Structure on Phaseolus vulgaris Germination and Seedling Development. Duran NM; Savassa SM; Lima RG; de Almeida E; Linhares FS; van Gestel CAM; Pereira de Carvalho HW J Agric Food Chem; 2017 Sep; 65(36):7874-7884. PubMed ID: 28817280 [TBL] [Abstract][Full Text] [Related]
18. A global metabolomic insight into the oxidative stress and membrane damage of copper oxide nanoparticles and microparticles on microalga Chlorella vulgaris. Wang L; Huang X; Sun W; Too HZ; Laserna AKC; Li SFY Environ Pollut; 2020 Mar; 258():113647. PubMed ID: 31810715 [TBL] [Abstract][Full Text] [Related]
19. [Phytotoxicity of copper oxide nanoparticles to metabolic activity in the roots of rice]. Wang SL; Zhang YX; Liu HZ; Xin H Huan Jing Ke Xue; 2014 May; 35(5):1968-73. PubMed ID: 25055694 [TBL] [Abstract][Full Text] [Related]
20. Copper oxide nanoparticles alter the uptake and distribution of cadmium through disturbing the ordered structure of the cell wall in Arabidopsis root. Jia H; Wei Y; An H; Wang Q; Yang J; Li C Plant Physiol Biochem; 2024 Feb; 207():108430. PubMed ID: 38364632 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]