These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 27226195)

  • 1. Membrane Interacting Peptides: A Review.
    Herrera AI; Tomich JM; Prakash O
    Curr Protein Pept Sci; 2016; 17(8):827-841. PubMed ID: 27226195
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular understanding of a potential functional link between antimicrobial and amyloid peptides.
    Zhang M; Zhao J; Zheng J
    Soft Matter; 2014 Oct; 10(38):7425-51. PubMed ID: 25105988
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Small Bioactive Peptides for Biomaterials Design and Therapeutics.
    Hamley IW
    Chem Rev; 2017 Dec; 117(24):14015-14041. PubMed ID: 29227635
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Membrane Active Peptides and Their Biophysical Characterization.
    Avci FG; Akbulut BS; Ozkirimli E
    Biomolecules; 2018 Aug; 8(3):. PubMed ID: 30135402
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Binding and crossing: Methods for the characterization of membrane-active peptides interactions with membranes at the molecular level.
    Sachon E; Walrant A; Sagan S; Cribier S; Rodriguez N
    Arch Biochem Biophys; 2021 Mar; 699():108751. PubMed ID: 33421380
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cationic membrane peptides: atomic-level insight of structure-activity relationships from solid-state NMR.
    Su Y; Li S; Hong M
    Amino Acids; 2013 Mar; 44(3):821-33. PubMed ID: 23108593
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Understanding and modelling the interactions of peptides with membranes: from partitioning to self-assembly.
    Chen CH; Melo MC; Berglund N; Khan A; de la Fuente-Nunez C; Ulmschneider JP; Ulmschneider MB
    Curr Opin Struct Biol; 2020 Apr; 61():160-166. PubMed ID: 32006812
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antimicrobial and cell-penetrating peptides: structure, assembly and mechanisms of membrane lysis via atomistic and coarse-grained molecular dynamics simulations.
    Bond PJ; Khalid S
    Protein Pept Lett; 2010 Nov; 17(11):1313-27. PubMed ID: 20673230
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biophysical properties of membrane-active peptides based on micelle modeling: a case study of cell-penetrating and antimicrobial peptides.
    Wang Q; Hong G; Johnson GR; Pachter R; Cheung MS
    J Phys Chem B; 2010 Nov; 114(43):13726-35. PubMed ID: 20939546
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Membrane interacting peptides: from killers to helpers.
    Dufourc EJ; Buchoux S; Toupé J; Sani MA; Jean-François F; Khemtémourian L; Grélard A; Loudet-Courrèges C; Laguerre M; Elezgaray J; Desbat B; Odaert B
    Curr Protein Pept Sci; 2012 Nov; 13(7):620-31. PubMed ID: 23116443
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A common landscape for membrane-active peptides.
    Last NB; Schlamadinger DE; Miranker AD
    Protein Sci; 2013 Jul; 22(7):870-82. PubMed ID: 23649542
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recent advances in computational modeling of α-helical membrane-active peptides.
    Polyansky AA; Chugunov AO; Vassilevski AA; Grishin EV; Efremov RG
    Curr Protein Pept Sci; 2012 Nov; 13(7):644-57. PubMed ID: 23363529
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of a possible uptake mechanism of selective antibacterial peptides.
    Polanco C; Samaniego JL; Castañón-González JA; Buhse T; Sordo ML
    Acta Biochim Pol; 2013; 60(4):629-33. PubMed ID: 24432312
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Insights into membrane translocation of the cell-penetrating peptide pVEC from molecular dynamics calculations.
    Alaybeyoglu B; Sariyar Akbulut B; Ozkirimli E
    J Biomol Struct Dyn; 2016 Nov; 34(11):2387-98. PubMed ID: 26569019
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Helical membrane peptides to modulate cell function.
    Beevers AJ; Dixon AM
    Chem Soc Rev; 2010 Jun; 39(6):2146-57. PubMed ID: 20502803
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cell-Surface Interactions on Arginine-Rich Cell-Penetrating Peptides Allow for Multiplex Modes of Internalization.
    Futaki S; Nakase I
    Acc Chem Res; 2017 Oct; 50(10):2449-2456. PubMed ID: 28910080
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antimicrobial and Cell-Penetrating Peptides: How to Understand Two Distinct Functions Despite Similar Physicochemical Properties.
    Neundorf I
    Adv Exp Med Biol; 2019; 1117():93-109. PubMed ID: 30980355
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional Peptides That Target Biomembranes: Design and Modes of Action.
    Futaki S
    Chem Pharm Bull (Tokyo); 2021; 69(7):601-607. PubMed ID: 34193708
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NMR studies of three-dimensional structure and positioning of CPPs in membrane model systems.
    Mäler L; Gräslund A
    Methods Mol Biol; 2011; 683():57-67. PubMed ID: 21053122
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determination of Structure and Micellar Interactions of Small Antimicrobial Peptides by Solution-State NMR.
    Wimmer R; Uggerhøj LE
    Methods Mol Biol; 2017; 1548():73-88. PubMed ID: 28013498
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.