BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

306 related articles for article (PubMed ID: 27226207)

  • 41. Patient-derived tumor organoids with p53 mutations, and not wild-type p53, are sensitive to synergistic combination PARP inhibitor treatment.
    Madorsky Rowdo FP; Xiao G; Khramtsova GF; Nguyen J; Martini R; Stonaker B; Boateng R; Oppong JK; Adjei EK; Awuah B; Kyei I; Aitpillah FS; Adinku MO; Ankomah K; Osei-Bonsu EB; Gyan KK; Altorki NK; Cheng E; Ginter PS; Hoda S; Newman L; Elemento O; Olopade OI; Davis MB; Martin ML; Bargonetti J
    Cancer Lett; 2024 Mar; 584():216608. PubMed ID: 38199587
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Development of PARP inhibitors in oncology.
    Rodon J; Iniesta MD; Papadopoulos K
    Expert Opin Investig Drugs; 2009 Jan; 18(1):31-43. PubMed ID: 19053880
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Biomarkers beyond BRCA: promising combinatorial treatment strategies in overcoming resistance to PARP inhibitors.
    Chu YY; Yam C; Yamaguchi H; Hung MC
    J Biomed Sci; 2022 Oct; 29(1):86. PubMed ID: 36284291
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The Role of PARP Inhibitors in the Treatment of Prostate Cancer: Recent Advances in Clinical Trials.
    Xia M; Guo Z; Hu Z
    Biomolecules; 2021 May; 11(5):. PubMed ID: 34066020
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effectiveness and safety of poly (ADP-ribose) polymerase inhibitors in cancer therapy: A systematic review and meta-analysis.
    Bao Z; Cao C; Geng X; Tian B; Wu Y; Zhang C; Chen Z; Li W; Shen H; Ying S
    Oncotarget; 2016 Feb; 7(7):7629-39. PubMed ID: 26399274
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Olaparib for the treatment of breast cancer.
    Robert M; Frenel JS; Gourmelon C; Patsouris A; Augereau P; Campone M
    Expert Opin Investig Drugs; 2017 Jun; 26(6):751-759. PubMed ID: 28395540
    [TBL] [Abstract][Full Text] [Related]  

  • 47. DNA Repair Deficiency Is Common in Advanced Prostate Cancer: New Therapeutic Opportunities.
    Dhawan M; Ryan CJ; Ashworth A
    Oncologist; 2016 Aug; 21(8):940-5. PubMed ID: 27317574
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Gynecologic Cancers: Emerging Novel Strategies for Targeting DNA Repair Deficiency.
    Kristeleit RS; Miller RE; Kohn EC
    Am Soc Clin Oncol Educ Book; 2016; 35():e259-68. PubMed ID: 27249731
    [TBL] [Abstract][Full Text] [Related]  

  • 49. PARP inhibitors for anticancer therapy.
    Curtin N
    Biochem Soc Trans; 2014 Feb; 42(1):82-8. PubMed ID: 24450632
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A Novel Mechanism to Induce BRCAness in Cancer Cells.
    Cai C
    Cancer Res; 2020 Jul; 80(14):2977-2978. PubMed ID: 32669350
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Investigation of BRCAness associated miRNA-gene axes in breast cancer: cell-free miR-182-5p as a potential expression signature of BRCAness.
    Darbeheshti F; Kadkhoda S; Keshavarz-Fathi M; Razi S; Bahramy A; Mansoori Y; Rezaei N
    BMC Cancer; 2022 Jun; 22(1):668. PubMed ID: 35715772
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Making the best of PARP inhibitors in ovarian cancer.
    Banerjee S; Kaye SB; Ashworth A
    Nat Rev Clin Oncol; 2010 Sep; 7(9):508-19. PubMed ID: 20700108
    [TBL] [Abstract][Full Text] [Related]  

  • 53. PARP Inhibitors in Prostate Cancer—The Preclinical Rationale and Current Clinical Development.
    Virtanen V; Paunu K; Ahlskog JK; Varnai R; Sipeky C; Sundvall M
    Genes (Basel); 2019 Jul; 10(8):. PubMed ID: 31357527
    [TBL] [Abstract][Full Text] [Related]  

  • 54. PARP inhibitor resistance: the underlying mechanisms and clinical implications.
    Li H; Liu ZY; Wu N; Chen YC; Cheng Q; Wang J
    Mol Cancer; 2020 Jun; 19(1):107. PubMed ID: 32563252
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Setting a diagnostic benchmark for tumor BRCA testing: detection of BRCA1 and BRCA2 large genomic rearrangements in FFPE tissue - A pilot study.
    Valtcheva N; Nguyen-Sträuli BD; Wagner U; Freiberger SN; Varga Z; Britschgi C; Dedes KJ; Rechsteiner MP
    Exp Mol Pathol; 2021 Dec; 123():104705. PubMed ID: 34637782
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Therapeutic targeting and patient selection for cancers with homologous recombination defects.
    Talens F; Jalving M; Gietema JA; Van Vugt MA
    Expert Opin Drug Discov; 2017 Jun; 12(6):565-581. PubMed ID: 28425306
    [TBL] [Abstract][Full Text] [Related]  

  • 57. BRCAness revisited.
    Lord CJ; Ashworth A
    Nat Rev Cancer; 2016 Feb; 16(2):110-20. PubMed ID: 26775620
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Synthetic lethality strategies: Beyond BRCA1/2 mutations in pancreatic cancer.
    Hu Y; Guo M
    Cancer Sci; 2020 Sep; 111(9):3111-3121. PubMed ID: 32639661
    [TBL] [Abstract][Full Text] [Related]  

  • 59. BRCA1/2-negative hereditary triple-negative breast cancers exhibit BRCAness.
    Domagala P; Hybiak J; Cybulski C; Lubinski J
    Int J Cancer; 2017 Apr; 140(7):1545-1550. PubMed ID: 27943282
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Emerging PARP inhibitors for treating breast cancer.
    Robert M; Patsouris A; Frenel JS; Gourmelon C; Augereau P; Campone M
    Expert Opin Emerg Drugs; 2018 Sep; 23(3):211-221. PubMed ID: 30251552
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.