These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 27226277)
1. Low temperature synthesis of silicon quantum dots with plasma chemistry control in dual frequency non-thermal plasmas. Sahu BB; Yin Y; Han JG; Shiratani M Phys Chem Chem Phys; 2016 Jun; 18(23):15697-710. PubMed ID: 27226277 [TBL] [Abstract][Full Text] [Related]
2. Tunable photoluminescence from nc-Si/a-SiNx:H quantum dot thin films prepared by ICP-CVD. Sain B; Das D Phys Chem Chem Phys; 2013 Mar; 15(11):3881-8. PubMed ID: 23407687 [TBL] [Abstract][Full Text] [Related]
3. Plasma engineering of silicon quantum dots and their properties through energy deposition and chemistry. Sahu BB; Yin Y; Gauter S; Han JG; Kersten H Phys Chem Chem Phys; 2016 Sep; 18(37):25837-25851. PubMed ID: 27711781 [TBL] [Abstract][Full Text] [Related]
4. [Spectral Characteristics of Si Quantum Dots Embedded in SiN(x) Thin Films Prepared by Magnetron Co-Sputtering]. Chen XB; Yang W; Duan LF; Zhang LY; Yang PZ; Song ZN Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Jul; 35(7):1770-3. PubMed ID: 26717722 [TBL] [Abstract][Full Text] [Related]
5. Structural evolution of nanocrystalline silicon thin films synthesized in high-density, low-temperature reactive plasmas. Cheng Q; Xu S; Ostrikov KK Nanotechnology; 2009 May; 20(21):215606. PubMed ID: 19423937 [TBL] [Abstract][Full Text] [Related]
6. Si quantum dots embedded in an amorphous SiC matrix: nanophase control by non-equilibrium plasma hydrogenation. Cheng Q; Tam E; Xu S; Ostrikov KK Nanoscale; 2010 Apr; 2(4):594-600. PubMed ID: 20644764 [TBL] [Abstract][Full Text] [Related]
7. The role of plasma chemistry on functional silicon nitride film properties deposited at low-temperature by mixing two frequency powers using PECVD. Sahu BB; Yin YY; Tsutsumi T; Hori M; Han JG Phys Chem Chem Phys; 2016 May; 18(18):13033-44. PubMed ID: 27109293 [TBL] [Abstract][Full Text] [Related]
8. Quantum confinement in amorphous silicon quantum dots embedded in silicon nitride. Park NM; Choi CJ; Seong TY; Park SJ Phys Rev Lett; 2001 Feb; 86(7):1355-7. PubMed ID: 11178082 [TBL] [Abstract][Full Text] [Related]
9. [Influence of Nitrogen Flow Rate on the Structure and Luminescence Properties of Silicon-Rich Silicon Nitride Film Materials in a High Hydrogen Atmosphere]. Zhang LR; Zhou BQ; Zhang N; Liu XC; Wuren TY; Gao AM Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Jul; 36(7):2048-54. PubMed ID: 30035880 [TBL] [Abstract][Full Text] [Related]
10. Luminescence tuning of amorphous Si quantum dots prepared by plasma-enhanced chemical vapor deposition. Kang SM; Yoon SG; Kim SW; Yoon DH J Nanosci Nanotechnol; 2008 May; 8(5):2540-3. PubMed ID: 18572680 [TBL] [Abstract][Full Text] [Related]
11. Photoluminescent silicon quantum dots in core/shell configuration: synthesis by low temperature and spontaneous plasma processing. Das D; Samanta A Nanotechnology; 2011 Feb; 22(5):055601. PubMed ID: 21178231 [TBL] [Abstract][Full Text] [Related]
12. [Influence of annealing and sputtering ambience on the photoluminescence of silicon nitride thin films]. Jia XY; Xu Z; Zhao SL; Zhang FJ; Zhao DW; Tang Y; Li Y; Zhou CL; Wang WJ Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Nov; 28(11):2494-7. PubMed ID: 19271474 [TBL] [Abstract][Full Text] [Related]
13. High performance multilayered nano-crystalline silicon/silicon-oxide light-emitting diodes on glass substrates. Darbari S; Shahmohammadi M; Mortazavi M; Mohajerzadeh S; Abdi Y; Robertson M; Morrison T Nanotechnology; 2011 Sep; 22(37):375204. PubMed ID: 21860083 [TBL] [Abstract][Full Text] [Related]
14. Surface chemistry and density distribution influence on visible luminescence of silicon quantum dots: an experimental and theoretical approach. Dutt A; Matsumoto Y; Santana-Rodríguez G; Ramos E; Monroy BM; Santoyo Salazar J Phys Chem Chem Phys; 2017 Jan; 19(2):1526-1535. PubMed ID: 27990516 [TBL] [Abstract][Full Text] [Related]
15. Shaping thin film growth and microstructure pathways via plasma and deposition energy: a detailed theoretical, computational and experimental analysis. Sahu BB; Han JG; Kersten H Phys Chem Chem Phys; 2017 Feb; 19(7):5591-5610. PubMed ID: 28168264 [TBL] [Abstract][Full Text] [Related]
16. Enhanced Electroluminescence from Silicon Quantum Dots Embedded in Silicon Nitride Thin Films Coupled with Gold Nanoparticles in Light Emitting Devices. Muñoz-Rosas AL; Rodríguez-Gómez A; Alonso-Huitrón JC Nanomaterials (Basel); 2018 Mar; 8(4):. PubMed ID: 29565267 [TBL] [Abstract][Full Text] [Related]
17. The Interplay of Quantum Confinement and Hydrogenation in Amorphous Silicon Quantum Dots. Askari S; Svrcek V; Maguire P; Mariotti D Adv Mater; 2015 Dec; 27(48):8011-6. PubMed ID: 26523743 [TBL] [Abstract][Full Text] [Related]
18. Single-step synthesis of crystalline h-BN quantum- and nanodots embedded in boron carbon nitride films. Matsoso BJ; Ranganathan K; Mutuma BK; Lerotholi T; Jones G; Coville NJ Nanotechnology; 2017 Mar; 28(10):105602. PubMed ID: 28054509 [TBL] [Abstract][Full Text] [Related]
19. Highly lattice-mismatched semiconductor-metal hybrid nanostructures: gold nanoparticle encapsulated luminescent silicon quantum dots. Ray M; Basu TS; Bandyopadhyay NR; Klie RF; Ghosh S; Raja SO; Dasgupta AK Nanoscale; 2014 Feb; 6(4):2201-10. PubMed ID: 24382635 [TBL] [Abstract][Full Text] [Related]
20. Tuning of refractive indices and optical band gaps in oxidized silicon quantum dot solids. Choi JK; Jang S; Sohn H; Jeong HD J Am Chem Soc; 2009 Dec; 131(49):17894-900. PubMed ID: 19911790 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]