BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

439 related articles for article (PubMed ID: 27226297)

  • 1. Antifreeze proteins govern the precipitation of trehalose in a freezing-avoiding insect at low temperature.
    Wen X; Wang S; Duman JG; Arifin JF; Juwita V; Goddard WA; Rios A; Liu F; Kim SK; Abrol R; DeVries AL; Henling LM
    Proc Natl Acad Sci U S A; 2016 Jun; 113(24):6683-8. PubMed ID: 27226297
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antifreeze and ice nucleator proteins in terrestrial arthropods.
    Duman JG
    Annu Rev Physiol; 2001; 63():327-57. PubMed ID: 11181959
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antifreeze proteins in Alaskan insects and spiders.
    Duman JG; Bennett V; Sformo T; Hochstrasser R; Barnes BM
    J Insect Physiol; 2004 Apr; 50(4):259-66. PubMed ID: 15081818
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural characteristics of a novel antifreeze protein from the longhorn beetle Rhagium inquisitor.
    Kristiansen E; Ramløv H; Højrup P; Pedersen SA; Hagen L; Zachariassen KE
    Insect Biochem Mol Biol; 2011 Feb; 41(2):109-17. PubMed ID: 21078390
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antifreeze proteins in the primary urine of larvae of the beetle Dendroides canadensis.
    Nickell PK; Sass S; Verleye D; Blumenthal EM; Duman JG
    J Exp Biol; 2013 May; 216(Pt 9):1695-703. PubMed ID: 23348942
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cold hardiness in relation to trace metal stress in the freeze-avoiding beetle Tenebrio molitor.
    Pedersen SA; Kristiansen E; Hansen BH; Andersen RA; Zachariassen KE
    J Insect Physiol; 2006 Aug; 52(8):846-53. PubMed ID: 16806256
    [TBL] [Abstract][Full Text] [Related]  

  • 7. When are antifreeze proteins in solution essential for ice growth inhibition?
    Drori R; Davies PL; Braslavsky I
    Langmuir; 2015 Jun; 31(21):5805-11. PubMed ID: 25946514
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antifreeze protein from freeze-tolerant grass has a beta-roll fold with an irregularly structured ice-binding site.
    Middleton AJ; Marshall CB; Faucher F; Bar-Dolev M; Braslavsky I; Campbell RL; Walker VK; Davies PL
    J Mol Biol; 2012 Mar; 416(5):713-24. PubMed ID: 22306740
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antifreeze proteins of the beetle Dendroides canadensis enhance one another's activities.
    Wang L; Duman JG
    Biochemistry; 2005 Aug; 44(30):10305-12. PubMed ID: 16042407
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expression of two self-enhancing antifreeze proteins from the beetle Dendroides canadensis in Drosophila melanogaster.
    Lin X; O'Tousa JE; Duman JG
    J Insect Physiol; 2010 Apr; 56(4):341-9. PubMed ID: 19931275
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The biological function of an insect antifreeze protein simulated by molecular dynamics.
    Kuiper MJ; Morton CJ; Abraham SE; Gray-Weale A
    Elife; 2015 May; 4():. PubMed ID: 25951514
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Seasonal variations in antifreeze protein activity and haemolymph osmolality in larvae of the beetle Ragium mordax (Coleoptera: Cerambycidae).
    Wilkens C; Ramløv H
    Cryo Letters; 2008; 29(4):293-300. PubMed ID: 19137192
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isolation and characterization of hemolymph antifreeze proteins from larvae of the longhorn beetle Rhagium inquisitor (L.).
    Kristiansen E; Ramløv H; Hagen L; Pedersen SA; Andersen RA; Zachariassen KE
    Comp Biochem Physiol B Biochem Mol Biol; 2005 Sep; 142(1):90-7. PubMed ID: 15993638
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The basis for hyperactivity of antifreeze proteins.
    Scotter AJ; Marshall CB; Graham LA; Gilbert JA; Garnham CP; Davies PL
    Cryobiology; 2006 Oct; 53(2):229-39. PubMed ID: 16887111
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential expression of two antifreeze proteins in the desert beetle Anatolica polita (Coleoptera: Tenebriondae): seasonal variation and environmental effects.
    Ma J; Wang J; Mao XF; Wang Y
    Cryo Letters; 2012; 33(5):337-48. PubMed ID: 23224367
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Seasonal variation of trehalose and glycerol concentrations in winter snow-active insects.
    Vanin S; Bubacco L; Beltramini M
    Cryo Letters; 2008; 29(6):485-91. PubMed ID: 19280052
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ice-binding proteins that accumulate on different ice crystal planes produce distinct thermal hysteresis dynamics.
    Drori R; Celik Y; Davies PL; Braslavsky I
    J R Soc Interface; 2014 Sep; 11(98):20140526. PubMed ID: 25008081
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Secondary structure of antifreeze proteins from overwintering larvae of the beetle Dendroides canadensis.
    Li N; Kendrick BS; Manning MC; Carpenter JF; Duman JG
    Arch Biochem Biophys; 1998 Dec; 360(1):25-32. PubMed ID: 9826425
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Partitioning of fish and insect antifreeze proteins into ice suggests they bind with comparable affinity.
    Marshall CB; Tomczak MM; Gauthier SY; Kuiper MJ; Lankin C; Walker VK; Davies PL
    Biochemistry; 2004 Jan; 43(1):148-54. PubMed ID: 14705940
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antifreeze proteins enable plants to survive in freezing conditions.
    Gupta R; Deswal R
    J Biosci; 2014 Dec; 39(5):931-44. PubMed ID: 25431421
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.