BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

983 related articles for article (PubMed ID: 27226370)

  • 1. Targeted Mutagenesis of Guinea Pig Cytomegalovirus Using CRISPR/Cas9-Mediated Gene Editing.
    Bierle CJ; Anderholm KM; Wang JB; McVoy MA; Schleiss MR
    J Virol; 2016 Aug; 90(15):6989-6998. PubMed ID: 27226370
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mutagenesis and Genome Engineering of Epstein-Barr Virus in Cultured Human Cells by CRISPR/Cas9.
    Yuen KS; Chan CP; Kok KH; Jin DY
    Methods Mol Biol; 2017; 1498():23-31. PubMed ID: 27709566
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Repair of a Mutation Disrupting the Guinea Pig Cytomegalovirus Pentameric Complex Acquired during Fibroblast Passage Restores Pathogenesis in Immune-Suppressed Guinea Pigs and in the Context of Congenital Infection.
    McVoy MA; Wang JB; Dittmer DP; Bierle CJ; Swanson EC; Fernández-Alarcón C; Hernandez-Alvarado N; Zabeli JC; Schleiss MR
    J Virol; 2016 Sep; 90(17):7715-27. PubMed ID: 27307567
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular cloning of the guinea pig cytomegalovirus (GPCMV) genome as an infectious bacterial artificial chromosome (BAC) in Escherichia coli.
    McGregor A; Schleiss MR
    Mol Genet Metab; 2001 Jan; 72(1):15-26. PubMed ID: 11161824
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CRISPR/Cas9-mediated genome editing of Epstein-Barr virus in human cells.
    Yuen KS; Chan CP; Wong NM; Ho CH; Ho TH; Lei T; Deng W; Tsao SW; Chen H; Kok KH; Jin DY
    J Gen Virol; 2015 Mar; 96(Pt 3):626-636. PubMed ID: 25502645
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [The application of CRISPR-Cas9 gene editing technology in viral infection diseases].
    Yin LJ; Hu SQ; Guo F
    Yi Chuan; 2015 May; 37(5):412-8. PubMed ID: 25998428
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CRISPR/Cas9-Mediated Genome Editing in Soybean Hairy Roots.
    Cai Y; Chen L; Liu X; Sun S; Wu C; Jiang B; Han T; Hou W
    PLoS One; 2015; 10(8):e0136064. PubMed ID: 26284791
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of CRISPR/Cas Genome Editing Technology for Targeted Mutagenesis in Rice.
    Xu R; Wei P; Yang J
    Methods Mol Biol; 2017; 1498():33-40. PubMed ID: 27709567
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient Mutagenesis of Marek's Disease Virus-Encoded microRNAs Using a CRISPR/Cas9-Based Gene Editing System.
    Luo J; Teng M; Zai X; Tang N; Zhang Y; Mandviwala A; Reddy VRAP; Baigent S; Yao Y; Nair V
    Viruses; 2020 Apr; 12(4):. PubMed ID: 32325942
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characteristic and inheritance analysis of targeted mutagenesis mediated by genome editing in rice.
    Tang L; Li YK; Zhang D; Mao BG; Lv QM; Hu YY; Shao Y; Peng Y; Zhao BR; Xia ST
    Yi Chuan; 2016 Aug; 38(8):746-55. PubMed ID: 27531613
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Potential Application of the CRISPR/Cas9 System against Herpesvirus Infections.
    Chen YC; Sheng J; Trang P; Liu F
    Viruses; 2018 May; 10(6):. PubMed ID: 29844277
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selection and Validation of Spacer Sequences for CRISPR-Cas9 Genome Editing and Transcription Regulation in Bacteria.
    Grenier F; Lucier JF; Rodrigue S
    Methods Mol Biol; 2015; 1334():233-44. PubMed ID: 26404154
    [TBL] [Abstract][Full Text] [Related]  

  • 13. One-step high-efficiency CRISPR/Cas9-mediated genome editing in Streptomyces.
    Huang H; Zheng G; Jiang W; Hu H; Lu Y
    Acta Biochim Biophys Sin (Shanghai); 2015 Apr; 47(4):231-43. PubMed ID: 25739462
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of a CRISPR/Cas9 genome editing toolbox for Corynebacterium glutamicum.
    Liu J; Wang Y; Lu Y; Zheng P; Sun J; Ma Y
    Microb Cell Fact; 2017 Nov; 16(1):205. PubMed ID: 29145843
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient Genome Engineering of a Virulent Klebsiella Bacteriophage Using CRISPR-Cas9.
    Shen J; Zhou J; Chen GQ; Xiu ZL
    J Virol; 2018 Sep; 92(17):. PubMed ID: 29899105
    [No Abstract]   [Full Text] [Related]  

  • 16. Disruptive non-disruptive applications of CRISPR/Cas9.
    Schmid-Burgk JL
    Curr Opin Biotechnol; 2017 Dec; 48():203-209. PubMed ID: 28633080
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of recombinant approaches to construct human cytomegalovirus mutants.
    Dekhtiarenko I; Cičin-Šain L; Messerle M
    Methods Mol Biol; 2014; 1119():59-79. PubMed ID: 24639218
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Editing of the Bacillus subtilis Genome by the CRISPR-Cas9 System.
    Altenbuchner J
    Appl Environ Microbiol; 2016 Sep; 82(17):5421-7. PubMed ID: 27342565
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Targeting human cytomegalovirus IE genes by CRISPR/Cas9 nuclease effectively inhibits viral replication and reactivation.
    Xiao J; Deng J; Zhang Q; Ma P; Lv L; Zhang Y; Li C; Zhang Y
    Arch Virol; 2020 Aug; 165(8):1827-1835. PubMed ID: 32507978
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bacterial CRISPR/Cas DNA endonucleases: A revolutionary technology that could dramatically impact viral research and treatment.
    Kennedy EM; Cullen BR
    Virology; 2015 May; 479-480():213-20. PubMed ID: 25759096
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 50.