These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 27226577)

  • 1. Reciprocal Regulation of the Cardiac Epigenome by Chromatin Structural Proteins Hmgb and Ctcf: IMPLICATIONS FOR TRANSCRIPTIONAL REGULATION.
    Monte E; Rosa-Garrido M; Karbassi E; Chen H; Lopez R; Rau CD; Wang J; Nelson SF; Wu Y; Stefani E; Lusis AJ; Wang Y; Kurdistani SK; Franklin S; Vondriska TM
    J Biol Chem; 2016 Jul; 291(30):15428-46. PubMed ID: 27226577
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative analysis of the chromatin proteome in disease reveals remodeling principles and identifies high mobility group protein B2 as a regulator of hypertrophic growth.
    Franklin S; Chen H; Mitchell-Jordan S; Ren S; Wang Y; Vondriska TM
    Mol Cell Proteomics; 2012 Jun; 11(6):M111.014258. PubMed ID: 22270000
    [TBL] [Abstract][Full Text] [Related]  

  • 3. HMGB2 Loss upon Senescence Entry Disrupts Genomic Organization and Induces CTCF Clustering across Cell Types.
    Zirkel A; Nikolic M; Sofiadis K; Mallm JP; Brackley CA; Gothe H; Drechsel O; Becker C; Altmüller J; Josipovic N; Georgomanolis T; Brant L; Franzen J; Koker M; Gusmao EG; Costa IG; Ullrich RT; Wagner W; Roukos V; Nürnberg P; Marenduzzo D; Rippe K; Papantonis A
    Mol Cell; 2018 May; 70(4):730-744.e6. PubMed ID: 29706538
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-Resolution Mapping of Chromatin Conformation in Cardiac Myocytes Reveals Structural Remodeling of the Epigenome in Heart Failure.
    Rosa-Garrido M; Chapski DJ; Schmitt AD; Kimball TH; Karbassi E; Monte E; Balderas E; Pellegrini M; Shih TT; Soehalim E; Liem D; Ping P; Galjart NJ; Ren S; Wang Y; Ren B; Vondriska TM
    Circulation; 2017 Oct; 136(17):1613-1625. PubMed ID: 28802249
    [TBL] [Abstract][Full Text] [Related]  

  • 5. HMGB proteins and arthritis.
    Taniguchi N; Kawakami Y; Maruyama I; Lotz M
    Hum Cell; 2018 Jan; 31(1):1-9. PubMed ID: 28916968
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Robust CTCF-Based Chromatin Architecture Underpins Epigenetic Changes in the Heart Failure Stress-Gene Response.
    Lee DP; Tan WLW; Anene-Nzelu CG; Lee CJM; Li PY; Luu TDA; Chan CX; Tiang Z; Ng SL; Huang X; Efthymios M; Autio MI; Jiang J; Fullwood MJ; Prabhakar S; Lieberman Aiden E; Foo RS
    Circulation; 2019 Apr; 139(16):1937-1956. PubMed ID: 30717603
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-mobility group protein HMGB2 regulates human erythroid differentiation through trans-activation of GFI1B transcription.
    Laurent B; Randrianarison-Huetz V; Maréchal V; Mayeux P; Dusanter-Fourt I; Duménil D
    Blood; 2010 Jan; 115(3):687-95. PubMed ID: 19965638
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcription of angiogenin and ribonuclease 4 is regulated by RNA polymerase III elements and a CCCTC binding factor (CTCF)-dependent intragenic chromatin loop.
    Sheng J; Luo C; Jiang Y; Hinds PW; Xu Z; Hu GF
    J Biol Chem; 2014 May; 289(18):12520-34. PubMed ID: 24659782
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CTCF: master weaver of the genome.
    Phillips JE; Corces VG
    Cell; 2009 Jun; 137(7):1194-211. PubMed ID: 19563753
    [TBL] [Abstract][Full Text] [Related]  

  • 10. HMGB2 orchestrates the chromatin landscape of senescence-associated secretory phenotype gene loci.
    Aird KM; Iwasaki O; Kossenkov AV; Tanizawa H; Fatkhutdinov N; Bitler BG; Le L; Alicea G; Yang TL; Johnson FB; Noma KI; Zhang R
    J Cell Biol; 2016 Nov; 215(3):325-334. PubMed ID: 27799366
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CTCF and CohesinSA-1 Mark Active Promoters and Boundaries of Repressive Chromatin Domains in Primary Human Erythroid Cells.
    Steiner LA; Schulz V; Makismova Y; Lezon-Geyda K; Gallagher PG
    PLoS One; 2016; 11(5):e0155378. PubMed ID: 27219007
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Early adaptive chromatin remodeling events precede pathologic phenotypes and are reinforced in the failing heart.
    Chapski DJ; Cabaj M; Morselli M; Mason RJ; Soehalim E; Ren S; Pellegrini M; Wang Y; Vondriska TM; Rosa-Garrido M
    J Mol Cell Cardiol; 2021 Nov; 160():73-86. PubMed ID: 34273410
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CTCF-mediated Chromatin Loop for the Posterior Hoxc Gene Expression in MEF Cells.
    Min H; Kong KA; Lee JY; Hong CP; Seo SH; Roh TY; Bae SS; Kim MH
    IUBMB Life; 2016 Jun; 68(6):436-44. PubMed ID: 27080371
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CTCF-mediated functional chromatin interactome in pluripotent cells.
    Handoko L; Xu H; Li G; Ngan CY; Chew E; Schnapp M; Lee CW; Ye C; Ping JL; Mulawadi F; Wong E; Sheng J; Zhang Y; Poh T; Chan CS; Kunarso G; Shahab A; Bourque G; Cacheux-Rataboul V; Sung WK; Ruan Y; Wei CL
    Nat Genet; 2011 Jun; 43(7):630-8. PubMed ID: 21685913
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aging-related loss of the chromatin protein HMGB2 in articular cartilage is linked to reduced cellularity and osteoarthritis.
    Taniguchi N; Caramés B; Ronfani L; Ulmer U; Komiya S; Bianchi ME; Lotz M
    Proc Natl Acad Sci U S A; 2009 Jan; 106(4):1181-6. PubMed ID: 19139395
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The murine IgH locus contains a distinct DNA sequence motif for the chromatin regulatory factor CTCF.
    Ciccone DN; Namiki Y; Chen C; Morshead KB; Wood AL; Johnston CM; Morris JW; Wang Y; Sadreyev R; Corcoran AE; Matthews AGW; Oettinger MA
    J Biol Chem; 2019 Sep; 294(37):13580-13592. PubMed ID: 31285261
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expression of HMGB2 indicates worse survival of patients and is required for the maintenance of Warburg effect in pancreatic cancer.
    Cai X; Ding H; Liu Y; Pan G; Li Q; Yang Z; Liu W
    Acta Biochim Biophys Sin (Shanghai); 2017 Feb; 49(2):119-127. PubMed ID: 28069585
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PARP1 Stabilizes CTCF Binding and Chromatin Structure To Maintain Epstein-Barr Virus Latency Type.
    Lupey-Green LN; Caruso LB; Madzo J; Martin KA; Tan Y; Hulse M; Tempera I
    J Virol; 2018 Sep; 92(18):. PubMed ID: 29976663
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The BET Protein BRD2 Cooperates with CTCF to Enforce Transcriptional and Architectural Boundaries.
    Hsu SC; Gilgenast TG; Bartman CR; Edwards CR; Stonestrom AJ; Huang P; Emerson DJ; Evans P; Werner MT; Keller CA; Giardine B; Hardison RC; Raj A; Phillips-Cremins JE; Blobel GA
    Mol Cell; 2017 Apr; 66(1):102-116.e7. PubMed ID: 28388437
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vitamin D-dependent chromatin association of CTCF in human monocytes.
    Neme A; Seuter S; Carlberg C
    Biochim Biophys Acta; 2016 Nov; 1859(11):1380-1388. PubMed ID: 27569350
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.