BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 27226610)

  • 1. Investigating the Mechanism by Which Gain-of-function Mutations to the α1 Glycine Receptor Cause Hyperekplexia.
    Zhang Y; Bode A; Nguyen B; Keramidas A; Lynch JW
    J Biol Chem; 2016 Jul; 291(29):15332-41. PubMed ID: 27226610
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Missense Mutation A384P Associated with Human Hyperekplexia Reveals a Desensitization Site of Glycine Receptors.
    Wang CH; Hernandez CC; Wu J; Zhou N; Hsu HY; Shen ML; Wang YC; Macdonald RL; Wu DC
    J Neurosci; 2018 Mar; 38(11):2818-2831. PubMed ID: 29440552
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The startle disease mutation α1S270T predicts shortening of glycinergic synaptic currents.
    Wu Z; Lape R; Jopp-Saile L; O'Callaghan BJ; Greiner T; Sivilotti LG
    J Physiol; 2020 Aug; 598(16):3417-3438. PubMed ID: 32445491
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New hyperekplexia mutations provide insight into glycine receptor assembly, trafficking, and activation mechanisms.
    Bode A; Wood SE; Mullins JGL; Keramidas A; Cushion TD; Thomas RH; Pickrell WO; Drew CJG; Masri A; Jones EA; Vassallo G; Born AP; Alehan F; Aharoni S; Bannasch G; Bartsch M; Kara B; Krause A; Karam EG; Matta S; Jain V; Mandel H; Freilinger M; Graham GE; Hobson E; Chatfield S; Vincent-Delorme C; Rahme JE; Afawi Z; Berkovic SF; Howell OW; Vanbellinghen JF; Rees MI; Chung SK; Lynch JW
    J Biol Chem; 2013 Nov; 288(47):33745-33759. PubMed ID: 24108130
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hyperekplexia phenotype of glycine receptor alpha1 subunit mutant mice identifies Zn(2+) as an essential endogenous modulator of glycinergic neurotransmission.
    Hirzel K; Müller U; Latal AT; Hülsmann S; Grudzinska J; Seeliger MW; Betz H; Laube B
    Neuron; 2006 Nov; 52(4):679-90. PubMed ID: 17114051
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The GLRA1 missense mutation W170S associates lack of Zn2+ potentiation with human hyperekplexia.
    Zhou N; Wang CH; Zhang S; Wu DC
    J Neurosci; 2013 Nov; 33(45):17675-81. PubMed ID: 24198360
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hyperekplexia-associated mutations in the neuronal glycine transporter 2.
    López-Corcuera B; Arribas-González E; Aragón C
    Neurochem Int; 2019 Feb; 123():95-100. PubMed ID: 29859229
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hyperekplexia associated with compound heterozygote mutations in the beta-subunit of the human inhibitory glycine receptor (GLRB).
    Rees MI; Lewis TM; Kwok JB; Mortier GR; Govaert P; Snell RG; Schofield PR; Owen MJ
    Hum Mol Genet; 2002 Apr; 11(7):853-60. PubMed ID: 11929858
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Disruption of a Structurally Important Extracellular Element in the Glycine Receptor Leads to Decreased Synaptic Integration and Signaling Resulting in Severe Startle Disease.
    Schaefer N; Berger A; van Brederode J; Zheng F; Zhang Y; Leacock S; Littau L; Jablonka S; Malhotra S; Topf M; Winter F; Davydova D; Lynch JW; Paige CJ; Alzheimer C; Harvey RJ; Villmann C
    J Neurosci; 2017 Aug; 37(33):7948-7961. PubMed ID: 28724750
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Startle Disease Mutation E103K Impairs Activation of Human Homomeric α1 Glycine Receptors by Disrupting an Intersubunit Salt Bridge across the Agonist Binding Site.
    Safar F; Hurdiss E; Erotocritou M; Greiner T; Lape R; Irvine MW; Fang G; Jane D; Yu R; Dämgen MA; Biggin PC; Sivilotti LG
    J Biol Chem; 2017 Mar; 292(12):5031-5042. PubMed ID: 28174298
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional reconstitution of glycinergic synapses incorporating defined glycine receptor subunit combinations.
    Zhang Y; Dixon CL; Keramidas A; Lynch JW
    Neuropharmacology; 2015 Feb; 89():391-7. PubMed ID: 25445488
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Murine startle mutant Nmf11 affects the structural stability of the glycine receptor and increases deactivation.
    Wilkins ME; Caley A; Gielen MC; Harvey RJ; Smart TG
    J Physiol; 2016 Jul; 594(13):3589-607. PubMed ID: 27028707
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel compound mutation in GLRA1 cause hyperekplexia in a Chinese boy- a case report and review of the literature.
    Yang Z; Sun G; Yao F; Tao D; Zhu B
    BMC Med Genet; 2017 Oct; 18(1):110. PubMed ID: 28985719
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distinct phenotypes in zebrafish models of human startle disease.
    Ganser LR; Yan Q; James VM; Kozol R; Topf M; Harvey RJ; Dallman JE
    Neurobiol Dis; 2013 Dec; 60():139-51. PubMed ID: 24029548
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Novel Glycine Receptor Variant with Startle Disease Affects Syndapin I and Glycinergic Inhibition.
    Langlhofer G; Schaefer N; Maric HM; Keramidas A; Zhang Y; Baumann P; Blum R; Breitinger U; Strømgaard K; Schlosser A; Kessels MM; Koch D; Qualmann B; Breitinger HG; Lynch JW; Villmann C
    J Neurosci; 2020 Jun; 40(25):4954-4969. PubMed ID: 32354853
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genotype-phenotype correlations in hyperekplexia: apnoeas, learning difficulties and speech delay.
    Thomas RH; Chung SK; Wood SE; Cushion TD; Drew CJ; Hammond CL; Vanbellinghen JF; Mullins JG; Rees MI
    Brain; 2013 Oct; 136(Pt 10):3085-95. PubMed ID: 24030948
    [TBL] [Abstract][Full Text] [Related]  

  • 17. GLRB is the third major gene of effect in hyperekplexia.
    Chung SK; Bode A; Cushion TD; Thomas RH; Hunt C; Wood SE; Pickrell WO; Drew CJ; Yamashita S; Shiang R; Leiz S; Longardt AC; Raile V; Weschke B; Puri RD; Verma IC; Harvey RJ; Ratnasinghe DD; Parker M; Rittey C; Masri A; Lingappa L; Howell OW; Vanbellinghen JF; Mullins JG; Lynch JW; Rees MI
    Hum Mol Genet; 2013 Mar; 22(5):927-40. PubMed ID: 23184146
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Individual knock out of glycine receptor alpha subunits identifies a specific requirement of glra1 for motor function in zebrafish.
    Samarut E; Chalopin D; Riché R; Allard M; Liao M; Drapeau P
    PLoS One; 2019; 14(5):e0216159. PubMed ID: 31048868
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glycine receptor mouse mutants: model systems for human hyperekplexia.
    Schaefer N; Langlhofer G; Kluck CJ; Villmann C
    Br J Pharmacol; 2013 Nov; 170(5):933-52. PubMed ID: 23941355
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Disease-specific human glycine receptor alpha1 subunit causes hyperekplexia phenotype and impaired glycine- and GABA(A)-receptor transmission in transgenic mice.
    Becker L; von Wegerer J; Schenkel J; Zeilhofer HU; Swandulla D; Weiher H
    J Neurosci; 2002 Apr; 22(7):2505-12. PubMed ID: 11923415
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.