These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 2722677)

  • 1. Oxidation processes in the biosynthesis of the tetracenomycin and elloramycin antibiotics.
    Anderson MG; Khoo CL; Rickards RW
    J Antibiot (Tokyo); 1989 Apr; 42(4):640-3. PubMed ID: 2722677
    [No Abstract]   [Full Text] [Related]  

  • 2. Metabolic products of microorganisms. 249. Tetracenomycins B3 and D3, key intermediates of the elloramycin and tetracenomycin C biosynthesis.
    Rohr J; Eick S; Zeeck A; Reuschenbach P; Zähner H; Fiedler HP
    J Antibiot (Tokyo); 1988 Aug; 41(8):1066-73. PubMed ID: 3170342
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure-activity relationships of elloramycin and tetracenomycin C.
    Rohr J; Zeeck A
    J Antibiot (Tokyo); 1990 Sep; 43(9):1169-78. PubMed ID: 2211379
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of Streptomyces olivaceus Tü 2353 genes involved in the production of the polyketide elloramycin.
    Decker H; Rohr J; Motamedi H; Zähner H; Hutchinson CR
    Gene; 1995 Dec; 166(1):121-6. PubMed ID: 8529875
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tetracenomycin F1 monooxygenase: oxidation of a naphthacenone to a naphthacenequinone in the biosynthesis of tetracenomycin C in Streptomyces glaucescens.
    Shen B; Hutchinson CR
    Biochemistry; 1993 Jul; 32(26):6656-63. PubMed ID: 8329392
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microbial transformation of aklanonic acid, a potential early intermediate in the biosynthesis of anthracyclines.
    Wagner C; Eckardt K; Schumann G; Ihn W; Tresselt D
    J Antibiot (Tokyo); 1984 Jun; 37(6):691-2. PubMed ID: 6430856
    [No Abstract]   [Full Text] [Related]  

  • 7. Benzanthrins A and B, a new class of quinone antibiotics. I. Discovery, fermentation and antibacterial activity.
    Theriault RJ; Rasmussen RR; Kohl WL; Prokop JF; Hutch TB; Barlow GJ
    J Antibiot (Tokyo); 1986 Nov; 39(11):1509-14. PubMed ID: 3793619
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generation of hybrid elloramycin analogs by combinatorial biosynthesis using genes from anthracycline-type and macrolide biosynthetic pathways.
    Rodriguez L; Oelkers C; Aguirrezabalaga I; Braña AF; Rohr J; Méndez C; Salas JA
    J Mol Microbiol Biotechnol; 2000 Jul; 2(3):271-6. PubMed ID: 10937435
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The biosynthetic origin of the pyridone ring of efrotomycin.
    Darland G; Arison B; Kaplan L
    J Ind Microbiol; 1991 Nov; 8(4):265-71. PubMed ID: 1367801
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biosynthesis of aklavinone and aclacinomycins.
    Kitamura I; Tobe H; Yoshimoto A; Oki T; Naganawa H; Takeuchi T; Umezawa H
    J Antibiot (Tokyo); 1981 Nov; 34(11):1498-500. PubMed ID: 7319911
    [No Abstract]   [Full Text] [Related]  

  • 11. Role of the cytochrome P450 NocL in nocardicin A biosynthesis.
    Kelly WL; Townsend CA
    J Am Chem Soc; 2002 Jul; 124(28):8186-7. PubMed ID: 12105888
    [TBL] [Abstract][Full Text] [Related]  

  • 12. N-demethylvancomycin, a novel antibiotic produced by a strain of Nocardia orientalis. Taxonomy and fermentation.
    Boeck LD; Mertz FP; Wolter RK; Higgens CE
    J Antibiot (Tokyo); 1984 May; 37(5):446-53. PubMed ID: 6547432
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Homology between Streptomyces genes coding for synthesis of different polyketides used to clone antibiotic biosynthetic genes.
    Malpartida F; Hallam SE; Kieser HM; Motamedi H; Hutchinson CR; Butler MJ; Sugden DA; Warren M; McKillop C; Bailey CR
    Nature; 1987 Feb 26-Mar 4; 325(6107):818-21. PubMed ID: 3029594
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Brasiliquinones A, B and C, new benz[alpha]anthraquinone antibiotics from Nocardia brasiliensis. I. Producing strain, isolation and biological activities of the antibiotics.
    Nemoto A; Tanaka Y; Karasaki Y; Komaki H; Yazawa K; Mikami Y; Tojo T; Kadowaki K; Tsuda M; Kobayashi J
    J Antibiot (Tokyo); 1997 Jan; 50(1):18-21. PubMed ID: 9066761
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glycocinnamoylspermidines, a new class of antibiotics. I. Description and fermentation of the organism producing the LL-BM123 antibiotics.
    Tresner HD; Korshalla JH; Fantini AA; Korshalla JD; Kirby JP; Goodman JJ; Kele RA; Shay AJ; Borders DB
    J Antibiot (Tokyo); 1978 May; 31(5):394-7. PubMed ID: 670081
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Effect of phosphorus metabolism in Proactinomyces fructiferi var. ristomycini on the biosynthesis of ristomycin].
    Egorov NS; Toropova EG; Suchkova LA
    Mikrobiologiia; 1971; 40(3):475-80. PubMed ID: 4327898
    [No Abstract]   [Full Text] [Related]  

  • 17. A resting cell system for efrotomycin biosynthesis.
    Nielsen JB; Kaplan L
    J Antibiot (Tokyo); 1989 Jun; 42(6):944-51. PubMed ID: 2737954
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anthracycline metabolites of tetracenomycin C-nonproducing Streptomyces glaucescens mutants.
    Yue S; Motamedi H; Wendt-Pienkowski E; Hutchinson CR
    J Bacteriol; 1986 Aug; 167(2):581-6. PubMed ID: 3460987
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SF2457, a new antibiotic related to amicetin.
    Itoh J; Miyadoh S
    J Antibiot (Tokyo); 1992 Jun; 45(6):846-53. PubMed ID: 1500349
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New anthracyclinone metabolites from two blocked mutants of Streptomyces galilaeus MA144-M1.
    Tobe H; Yoshimoto A; Ishikura T; Naganawa H; Takeuchi T; Umezawa H
    J Antibiot (Tokyo); 1982 Dec; 35(12):1641-5. PubMed ID: 6962794
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.