These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
103 related articles for article (PubMed ID: 27227422)
1. Quantification of Phenolic Antioxidant Moieties in Dissolved Organic Matter by Flow-Injection Analysis with Electrochemical Detection. Walpen N; Schroth MH; Sander M Environ Sci Technol; 2016 Jun; 50(12):6423-32. PubMed ID: 27227422 [TBL] [Abstract][Full Text] [Related]
2. Two analytical approaches quantifying the electron donating capacities of dissolved organic matter to monitor its oxidation during chlorination and ozonation. Önnby L; Walpen N; Salhi E; Sander M; von Gunten U Water Res; 2018 Nov; 144():677-689. PubMed ID: 30096693 [TBL] [Abstract][Full Text] [Related]
3. Electron-Donating Phenolic and Electron-Accepting Quinone Moieties in Peat Dissolved Organic Matter: Quantities and Redox Transformations in the Context of Peat Biogeochemistry. Walpen N; Getzinger GJ; Schroth MH; Sander M Environ Sci Technol; 2018 May; 52(9):5236-5245. PubMed ID: 29634257 [TBL] [Abstract][Full Text] [Related]
4. Onsite quantifying electron donating capacity of dissolved organic matter. Yuan Y; Zhang H; Wei Y; Si Y; Li G; Zhang F Sci Total Environ; 2019 Apr; 662():57-64. PubMed ID: 30690379 [TBL] [Abstract][Full Text] [Related]
5. Evaluation of the antioxidant activity by flow injection analysis method with electrochemically generated ABTS radical cation. Iveković D; Milardović S; Roboz M; Grabarić BS Analyst; 2005 May; 130(5):708-14. PubMed ID: 15852141 [TBL] [Abstract][Full Text] [Related]
6. Chemical oxidation of dissolved organic matter by chlorine dioxide, chlorine, and ozone: effects on its optical and antioxidant properties. Wenk J; Aeschbacher M; Salhi E; Canonica S; von Gunten U; Sander M Environ Sci Technol; 2013 Oct; 47(19):11147-56. PubMed ID: 23978074 [TBL] [Abstract][Full Text] [Related]
7. Oxidant-reactive carbonous moieties in dissolved organic matter: Selective quantification by oxidative titration using chlorine dioxide and ozone. Houska J; Salhi E; Walpen N; von Gunten U Water Res; 2021 Dec; 207():117790. PubMed ID: 34740166 [TBL] [Abstract][Full Text] [Related]
8. Phenolic antioxidants inhibit the triplet-induced transformation of anilines and sulfonamide antibiotics in aqueous solution. Wenk J; Canonica S Environ Sci Technol; 2012 May; 46(10):5455-62. PubMed ID: 22510041 [TBL] [Abstract][Full Text] [Related]
9. Application of the 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) radical cation assay to a flow injection system for the evaluation of antioxidant activity of some pure compounds and beverages. Pellegrini N; Del Rio D; Colombi B; Bianchi M; Brighenti F J Agric Food Chem; 2003 Jan; 51(1):260-4. PubMed ID: 12502418 [TBL] [Abstract][Full Text] [Related]
10. ABTS as an Electron Shuttle to Enhance the Oxidation Kinetics of Substituted Phenols by Aqueous Permanganate. Song Y; Jiang J; Ma J; Pang SY; Liu YZ; Yang Y; Luo CW; Zhang JQ; Gu J; Qin W Environ Sci Technol; 2015 Oct; 49(19):11764-71. PubMed ID: 26378975 [TBL] [Abstract][Full Text] [Related]
11. Photosensitizing and Inhibitory Effects of Ozonated Dissolved Organic Matter on Triplet-Induced Contaminant Transformation. Wenk J; Aeschbacher M; Sander M; von Gunten U; Canonica S Environ Sci Technol; 2015 Jul; 49(14):8541-9. PubMed ID: 26091366 [TBL] [Abstract][Full Text] [Related]
12. A method for measuring difference in activity of phenolic and non- phenolic groups through 2,2` azino-bis-(3-ethyl-benzothiazoline-6- sulphonate) radical cation. Masood N; Luqman S Comb Chem High Throughput Screen; 2014; 17(8):718-22. PubMed ID: 24910258 [TBL] [Abstract][Full Text] [Related]
13. Antioxidant properties of humic substances. Aeschbacher M; Graf C; Schwarzenbach RP; Sander M Environ Sci Technol; 2012 May; 46(9):4916-25. PubMed ID: 22463073 [TBL] [Abstract][Full Text] [Related]
14. Phenolic and enolic hydroxyl groups in curcumin: which plays the major role in scavenging radicals? Feng JY; Liu ZQ J Agric Food Chem; 2009 Nov; 57(22):11041-6. PubMed ID: 19736944 [TBL] [Abstract][Full Text] [Related]
15. Effects of molecular structure on kinetics and dynamics of the trolox equivalent antioxidant capacity assay with ABTS(+•). Tian X; Schaich KM J Agric Food Chem; 2013 Jun; 61(23):5511-9. PubMed ID: 23659464 [TBL] [Abstract][Full Text] [Related]
16. Predicting reactivity of model DOM compounds towards chlorine with mediated electrochemical oxidation. de Vera GA; Gernjak W; Radjenovic J Water Res; 2017 May; 114():113-121. PubMed ID: 28229949 [TBL] [Abstract][Full Text] [Related]
17. Antioxidant activity: what do we measure? Bartosz G; Bartosz M Acta Biochim Pol; 1999; 46(1):23-9. PubMed ID: 10453978 [TBL] [Abstract][Full Text] [Related]
18. Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. Apak R; Güçlü K; Ozyürek M; Karademir SE J Agric Food Chem; 2004 Dec; 52(26):7970-81. PubMed ID: 15612784 [TBL] [Abstract][Full Text] [Related]
19. Influence of Divalent Cation Inhibition and Dissolved Organic Matter Enhancement on Phenol Oxidation Kinetics by Manganese Oxides. Swenson JT; Ginder-Vogel M; Remucal CK Environ Sci Technol; 2024 Feb; 58(5):2479-2489. PubMed ID: 38265036 [TBL] [Abstract][Full Text] [Related]
20. Modified 2,2-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (abts) method to measure antioxidant capacity of Selected small fruits and comparison to ferric reducing antioxidant power (FRAP) and 2,2'-diphenyl-1-picrylhydrazyl (DPPH) methods. Ozgen M; Reese RN; Tulio AZ; Scheerens JC; Miller AR J Agric Food Chem; 2006 Feb; 54(4):1151-7. PubMed ID: 16478230 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]