These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 27227961)

  • 1. Ice-Active Substances from the Infective Juveniles of the Freeze Tolerant Entomopathogenic Nematode, Steinernema feltiae.
    Ali F; Wharton DA
    PLoS One; 2016; 11(5):e0156502. PubMed ID: 27227961
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Infective Juveniles of the Entomopathogenic Nematode, Steinernema feltiae Produce Cryoprotectants in Response to Freezing and Cold Acclimation.
    Ali F; Wharton DA
    PLoS One; 2015; 10(10):e0141810. PubMed ID: 26509788
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intracellular freezing in the infective juveniles of Steinernema feltiae: an entomopathogenic nematode.
    Ali F; Wharton DA
    PLoS One; 2014; 9(4):e94179. PubMed ID: 24769523
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cold tolerance of an Antarctic nematode that survives intracellular freezing: comparisons with other nematode species.
    Smith T; Wharton DA; Marshall CJ
    J Comp Physiol B; 2008 Jan; 178(1):93-100. PubMed ID: 17712562
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ice-active proteins from the Antarctic nematode Panagrolaimus davidi.
    Wharton DA; Barrett J; Goodall G; Marshall CJ; Ramløv H
    Cryobiology; 2005 Oct; 51(2):198-207. PubMed ID: 16102742
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cold tolerance abilities of two entomopathogenic nematodes, Steinernema feltiae and Heterorhabditis bacteriophora.
    Ali F; Wharton DA
    Cryobiology; 2013 Feb; 66(1):24-9. PubMed ID: 23142823
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acclimation of entomopathogenic nematodes to novel temperatures: trehalose accumulation and the acquisition of thermotolerance.
    Jagdale GB; Grewal PS
    Int J Parasitol; 2003 Feb; 33(2):145-52. PubMed ID: 12633652
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of ice recrystallization inhibition activity in the novel freeze-responsive protein Fr10 from freeze-tolerant wood frogs, Rana sylvatica.
    Le Tri D; Childers CL; Adam MK; Ben RN; Storey KB; Biggar KK
    J Therm Biol; 2019 Aug; 84():426-430. PubMed ID: 31466782
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recrystallization in a freezing tolerant Antarctic nematode, Panagrolaimus davidi, and an alpine weta, Hemideina maori (Orthoptera; Stenopelmatidae).
    Ramløv H; Wharton DA; Wilson PW
    Cryobiology; 1996 Dec; 33(6):607-13. PubMed ID: 8975688
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Animal ice-binding (antifreeze) proteins and glycolipids: an overview with emphasis on physiological function.
    Duman JG
    J Exp Biol; 2015 Jun; 218(Pt 12):1846-55. PubMed ID: 26085662
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Knockdown of Ice-Binding Proteins in Brachypodium distachyon Demonstrates Their Role in Freeze Protection.
    Bredow M; Vanderbeld B; Walker VK
    PLoS One; 2016; 11(12):e0167941. PubMed ID: 27959937
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential scanning calorimetry studies on an Antarctic nematode (Panagrolaimus davidi) which survives intracellular freezing.
    Wharton DA; Block W
    Cryobiology; 1997 Mar; 34(2):114-21. PubMed ID: 9130384
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cold tolerance of the Antarctic nematodes Plectus murrayi and Scottnema lindsayae.
    Wharton DA; Raymond MR
    J Comp Physiol B; 2015 Apr; 185(3):281-9. PubMed ID: 25576363
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antifreeze and ice nucleator proteins in terrestrial arthropods.
    Duman JG
    Annu Rev Physiol; 2001; 63():327-57. PubMed ID: 11181959
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cold acclimation and cryoprotectants in a freeze-tolerant Antarctic nematode, Panagrolaimus davidi.
    Wharton DA; Judge KF; Worland MR
    J Comp Physiol B; 2000 Jun; 170(4):321-7. PubMed ID: 10935523
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ice-active proteins and cryoprotectants from the New Zealand alpine cockroach, Celatoblatta quinquemaculata.
    Wharton DA; Pow B; Kristensen M; Ramløv H; Marshall CJ
    J Insect Physiol; 2009 Jan; 55(1):27-31. PubMed ID: 18955061
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanisms underlying insect freeze tolerance.
    Toxopeus J; Sinclair BJ
    Biol Rev Camb Philos Soc; 2018 Nov; 93(4):1891-1914. PubMed ID: 29749114
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The mechanism by which fish antifreeze proteins cause thermal hysteresis.
    Kristiansen E; Zachariassen KE
    Cryobiology; 2005 Dec; 51(3):262-80. PubMed ID: 16140290
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intracellular freezing and survival in the freeze tolerant alpine cockroach Celatoblatta quinquemaculata.
    Worland MR; Wharton DA; Byars SG
    J Insect Physiol; 2004; 50(2-3):225-32. PubMed ID: 15019525
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ice Nucleation Activity in Plants: The Distribution, Characterization, and Their Roles in Cold Hardiness Mechanisms.
    Ishikawa M; Yamazaki H; Kishimoto T; Murakawa H; Stait-Gardner T; Kuchitsu K; Price WS
    Adv Exp Med Biol; 2018; 1081():99-115. PubMed ID: 30288706
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.