These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 27227961)

  • 21. Engineered Compounds to Control Ice Nucleation and Recrystallization.
    William N; Mangan S; Ben RN; Acker JP
    Annu Rev Biomed Eng; 2023 Jun; 25():333-362. PubMed ID: 37104651
    [TBL] [Abstract][Full Text] [Related]  

  • 22. High-capacity ice-recrystallization endpoint assay employing superhydrophobic coatings that is equivalent to the 'splat' assay.
    Graham LA; Agrawal P; Oleschuk RD; Davies PL
    Cryobiology; 2018 Apr; 81():138-144. PubMed ID: 29397921
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of Temperature and Host Life Stage on Efficacy of Soil Entomopathogens Against the Swede Midge (Diptera: Cecidomyiidae).
    Evans BG; Jordan KS; Brownbridge M; Hallett RH
    J Econ Entomol; 2015 Apr; 108(2):473-83. PubMed ID: 26470158
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Recrystallization inhibition assessed by splat cooling and optical recrystallometry.
    Wharton DA; Wilson PW; Mutch JS; Marshall CJ; Lim M
    Cryo Letters; 2007; 28(1):61-8. PubMed ID: 17369963
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Transcriptome analysis of stress tolerance in entomopathogenic nematodes of the genus Steinernema.
    Yaari M; Doron-Faigenboim A; Koltai H; Salame L; Glazer I
    Int J Parasitol; 2016 Feb; 46(2):83-95. PubMed ID: 26598027
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evaluation of efficacy of entomopathogenic nematodes against larvae of Lucilia sericata (Meigen, 1826) (Diptera: Calliphoridae).
    Tóth EM; Márialigeti K; Fodor A; Lucskai A; Farkas R
    Acta Vet Hung; 2005; 53(1):65-71. PubMed ID: 15782660
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cross-stress tolerance and expression of stress-related proteins in osmotically desiccated entomopathogenic Steinernema feltiae IS-6.
    Chen S; Gollop N; Glazer I
    Parasitology; 2005 Nov; 131(Pt 5):695-703. PubMed ID: 16255828
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Use of cellulose acetate electrophoresis in the taxonomy of steinernematids (rhabditida, nematoda).
    Jagdale GB; Gordon R; Vrain TC
    J Nematol; 1996 Sep; 28(3):301-9. PubMed ID: 19277147
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Routes of penetration of the entomopathogenic nematode steinernema feltiae attacking larval and adult houseflies (Musca domestica).
    Renn N
    J Invertebr Pathol; 1998 Nov; 72(3):281-7. PubMed ID: 9784352
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ice nucleation and antinucleation in nature.
    Zachariassen KE; Kristiansen E
    Cryobiology; 2000 Dec; 41(4):257-79. PubMed ID: 11222024
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Spatial structuring and frequency distribution of the nematode Steinernema feltiae Filipjev.
    Bohan DA
    Parasitology; 2000 Oct; 121 ( Pt 4)():417-25. PubMed ID: 11072905
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Plant thermal hysteresis proteins.
    Urrutia ME; Duman JG; Knight CA
    Biochim Biophys Acta; 1992 May; 1121(1-2):199-206. PubMed ID: 1599942
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Phoresy of the entomopathogenic nematode Steinernema feltiae by the earthworm Eisenia fetida.
    Campos-Herrera R; Trigo D; Gutiérrez C
    J Invertebr Pathol; 2006 May; 92(1):50-4. PubMed ID: 16542677
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characterization in biological traits of entomopathogenic nematodes isolated from North China.
    Ma J; Chen S; Moens M; De Clercq P; Li X; Han R
    J Invertebr Pathol; 2013 Nov; 114(3):268-76. PubMed ID: 24035764
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Differential gene expression during desiccation stress in the insect-killing nematode Steinernema feltiae IS-6.
    Gal TZ; Glazer I; Koltai H
    J Parasitol; 2003 Aug; 89(4):761-6. PubMed ID: 14533688
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Molecular characterization and origin of novel bipartite cold-regulated ice recrystallization inhibition proteins from cereals.
    Tremblay K; Ouellet F; Fournier J; Danyluk J; Sarhan F
    Plant Cell Physiol; 2005 Jun; 46(6):884-91. PubMed ID: 15792959
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of temperature on the development of Steinernema carpocapsae and Steinernema feltiae (Nematoda: Rhabditida) in liquid culture.
    Hirao A; Ehlers RU
    Appl Microbiol Biotechnol; 2009 Oct; 84(6):1061-7. PubMed ID: 19455323
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Freeze tolerance in an arctic Alaska stonefly.
    Walters KR; Sformo T; Barnes BM; Duman JG
    J Exp Biol; 2009 Jan; 212(Pt 2):305-12. PubMed ID: 19112150
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cold tolerance mechanisms of two arthropods from the Andean Range of Central Chile: Agathemera crassa (Insecta: Agathemeridae) and Euathlus condorito (Arachnida: Theraphosidae).
    Cubillos C; Cáceres JC; Villablanca C; Villarreal P; Baeza M; Cabrera R; Graether SP; Veloso C
    J Therm Biol; 2018 May; 74():133-139. PubMed ID: 29801618
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ice-Binding Proteins in Plants.
    Bredow M; Walker VK
    Front Plant Sci; 2017; 8():2153. PubMed ID: 29312400
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.