These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 27228130)

  • 1. Disparate Strain Dependent Thermal Conductivity of Two-dimensional Penta-Structures.
    Liu H; Qin G; Lin Y; Hu M
    Nano Lett; 2016 Jun; 16(6):3831-42. PubMed ID: 27228130
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Disparate strain response of the thermal transport properties of bilayer penta-graphene as compared to that of monolayer penta-graphene.
    Sun Z; Yuan K; Zhang X; Qin G; Gong X; Tang D
    Phys Chem Chem Phys; 2019 Jul; 21(28):15647-15655. PubMed ID: 31268444
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrogenation of Penta-Graphene Leads to Unexpected Large Improvement in Thermal Conductivity.
    Wu X; Varshney V; Lee J; Zhang T; Wohlwend JL; Roy AK; Luo T
    Nano Lett; 2016 Jun; 16(6):3925-35. PubMed ID: 27152879
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of High Order Phonon Scattering on the Thermal Conductivity and Its Response to Strain of a Penta-NiN
    Zhang C; Sun J; Shen Y; Kang W; Wang Q
    J Phys Chem Lett; 2022 Jun; 13(25):5734-5741. PubMed ID: 35713616
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonmonotonic strain dependence of lattice thermal conductivity in monolayer SiC: a first-principles study.
    Guo SD; Dong J; Liu JT
    Phys Chem Chem Phys; 2018 Aug; 20(34):22038-22046. PubMed ID: 30112534
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultra-high thermal conductivity of two-dimensional C
    Wang H; Gao C; Peng B; Wu J; Wang X; Wei D; Tan L; Qin Z; Qin G
    Nanotechnology; 2023 Feb; 34(17):. PubMed ID: 36779917
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electric field tuned anisotropic to isotropic thermal transport transition in monolayer borophene without altering its atomic structure.
    Yang Z; Yuan K; Meng J; Hu M
    Nanoscale; 2020 Oct; 12(37):19178-19190. PubMed ID: 32926048
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Orbitally driven low thermal conductivity of monolayer gallium nitride (GaN) with planar honeycomb structure: a comparative study.
    Qin Z; Qin G; Zuo X; Xiong Z; Hu M
    Nanoscale; 2017 Mar; 9(12):4295-4309. PubMed ID: 28295111
    [TBL] [Abstract][Full Text] [Related]  

  • 9. First-principles study of thermal transport in nitrogenated holey graphene.
    Ouyang T; Xiao H; Tang C; Zhang X; Hu M; Zhong J
    Nanotechnology; 2017 Jan; 28(4):045709. PubMed ID: 27997371
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The disparate effect of strain on thermal conductivity of 2-D materials.
    Dheeraj KVS; Sathian SP
    Phys Chem Chem Phys; 2021 Oct; 23(40):23096-23105. PubMed ID: 34617094
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermal conductivity of penta-graphene from molecular dynamics study.
    Xu W; Zhang G; Li B
    J Chem Phys; 2015 Oct; 143(15):154703. PubMed ID: 26493918
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lattice thermal conductivity and mechanical properties of the single-layer penta-NiN
    Mirchi P; Adessi C; Merabia S; Rajabpour A
    Phys Chem Chem Phys; 2024 May; 26(19):14216-14227. PubMed ID: 38689542
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Why thermal conductivity of CaO is lower than that of CaS: a study from the perspective of phonon splitting of optical mode.
    Yang Z; Yuan K; Meng J; Zhang X; Tang D; Hu M
    Nanotechnology; 2021 Jan; 32(2):025709. PubMed ID: 33055376
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How Hydrodynamic Phonon Transport Determines the Convergence of Thermal Conductivity in Two-Dimensional Materials.
    Jiang J; Lu S; Ouyang Y; Chen J
    Nanomaterials (Basel); 2022 Aug; 12(16):. PubMed ID: 36014717
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A C
    Shen Y; Wang FQ; Liu J; Guo Y; Li X; Qin G; Hu M; Wang Q
    Nanoscale; 2018 Mar; 10(13):6099-6104. PubMed ID: 29546901
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of biaxial tensile strain on the first-principles-driven thermal conductivity of buckled arsenene and phosphorene.
    Taheri A; Da Silva C; Amon CH
    Phys Chem Chem Phys; 2018 Nov; 20(43):27611-27620. PubMed ID: 30371690
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phonon thermal transport in ferroelectric
    Qi H; Wu C; Lu P; Liu C
    Nanotechnology; 2023 Dec; 35(8):. PubMed ID: 37963408
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Strain engineering of phonon thermal transport properties in monolayer 2H-MoTe
    Shafique A; Shin YH
    Phys Chem Chem Phys; 2017 Dec; 19(47):32072-32078. PubMed ID: 29181465
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermal Transport in Pentagonal CX
    Wang N; Gan S; Wei Q; He G; Chen X; Ji Y; Wang S; Wang G; Shen C
    Langmuir; 2024 Apr; 40(15):7992-8001. PubMed ID: 38561994
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Giant manipulation of thermal conductivity anisotropy in black phosphorene under external electric fields.
    Yang Z; Zhang M; Gu W; Xu X; Liu C; Lan X
    Phys Chem Chem Phys; 2024 Jul; ():. PubMed ID: 39005190
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.