These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 27228150)

  • 1. Tracing Road Network Bottleneck by Data Driven Approach.
    Qi H; Liu M; Zhang L; Wang D
    PLoS One; 2016; 11(5):e0156089. PubMed ID: 27228150
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatial-Temporal Congestion Identification Based on Time Series Similarity Considering Missing Data.
    Qi H; Liu M; Wang D; Chen M
    PLoS One; 2016; 11(9):e0162043. PubMed ID: 27649412
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimating Urban Traffic Patterns through Probabilistic Interconnectivity of Road Network Junctions.
    Manley E
    PLoS One; 2015; 10(5):e0127095. PubMed ID: 26009884
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Large-scale transportation network congestion evolution prediction using deep learning theory.
    Ma X; Yu H; Wang Y; Wang Y
    PLoS One; 2015; 10(3):e0119044. PubMed ID: 25780910
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new cellular automaton model for urban two-way road networks.
    Shi J; Cheng L; Long J; Liu Y
    Comput Intell Neurosci; 2014; 2014():685047. PubMed ID: 25435868
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Percolation transition in dynamical traffic network with evolving critical bottlenecks.
    Li D; Fu B; Wang Y; Lu G; Berezin Y; Stanley HE; Havlin S
    Proc Natl Acad Sci U S A; 2015 Jan; 112(3):669-72. PubMed ID: 25552558
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Short-Term Traffic State Prediction Based on the Critical Road Selection Optimization in Transportation Networks.
    Ma T; Gong G; Ren Y
    Comput Intell Neurosci; 2021; 2021():9966382. PubMed ID: 34504523
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transition characteristic analysis of traffic evolution process for urban traffic network.
    Wang L; Chen H; Li Y
    ScientificWorldJournal; 2014; 2014():603274. PubMed ID: 24982969
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development and application of an aerosol screening model for size-resolved urban aerosols.
    Stanier CO; Lee SR;
    Res Rep Health Eff Inst; 2014 Jun; (179):3-79. PubMed ID: 25145039
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of critical links in a large-scale road network considering the traffic flow betweenness index.
    Li F; Jia H; Luo Q; Li Y; Yang L
    PLoS One; 2020; 15(4):e0227474. PubMed ID: 32275666
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measuring Road Network Vulnerability with Sensitivity Analysis.
    Jun-Qiang L; Long-Hai Y; Liu WY; Zhao L
    PLoS One; 2017; 12(1):e0170292. PubMed ID: 28125706
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A user exposure based approach for non-structural road network vulnerability analysis.
    Jin L; Wang H; Xie B; Yu L; Liu L
    PLoS One; 2017; 12(11):e0188790. PubMed ID: 29176832
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterisation of an urban bus network for environmental purposes.
    André M; Villanova A
    Sci Total Environ; 2004 Dec; 334-335():85-99. PubMed ID: 15504495
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microscopic theory of spatial-temporal congested traffic patterns at highway bottlenecks.
    Kerner BS; Klenov SL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Sep; 68(3 Pt 2):036130. PubMed ID: 14524855
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carbon emissions tax policy of urban road traffic and its application in Panjin, China.
    Yang L; Hu X; Fang L
    PLoS One; 2018; 13(5):e0196762. PubMed ID: 29738580
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Normative models and healthcare planning: network-based simulations within a geographic information system environment.
    Walsh SJ; Page PH; Gesler WM
    Health Serv Res; 1997 Jun; 32(2):243-60. PubMed ID: 9180618
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An Optimal Schedule for Urban Road Network Repair Based on the Greedy Algorithm.
    Lu G; Xiong Y; Ding C; Wang Y
    PLoS One; 2016; 11(10):e0164780. PubMed ID: 27768732
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Learning Traffic as Images: A Deep Convolutional Neural Network for Large-Scale Transportation Network Speed Prediction.
    Ma X; Dai Z; He Z; Ma J; Wang Y; Wang Y
    Sensors (Basel); 2017 Apr; 17(4):. PubMed ID: 28394270
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Percolation of heterogeneous flows uncovers the bottlenecks of infrastructure networks.
    Hamedmoghadam H; Jalili M; Vu HL; Stone L
    Nat Commun; 2021 Feb; 12(1):1254. PubMed ID: 33623037
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrating air pollution modelling with scenario testing in road transport planning: the TRAEMS approach.
    Affum JK; Brown AL; Chan YC
    Sci Total Environ; 2003 Aug; 312(1-3):1-14. PubMed ID: 12873393
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.