These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 27228185)

  • 21. Optical coherence tomography assessment of late intra-scaffold dissection: a new challenge of bioresorbable scaffolds.
    Ohno Y; Mangiameli A; Attizzani GF; Capodanno D; Tamburino C
    JACC Cardiovasc Interv; 2015 Jan; 8(1 Pt A):e11-2. PubMed ID: 25499307
    [No Abstract]   [Full Text] [Related]  

  • 22. Mechanism of Drug-Eluting Absorbable Metal Scaffold Restenosis: A Serial Optical Coherence Tomography Study.
    Ueki Y; Räber L; Otsuka T; Rai H; Losdat S; Windecker S; Garcia-Garcia HM; Landmesser U; Koolen J; Byrne R; Haude M; Joner M
    Circ Cardiovasc Interv; 2020 Mar; 13(3):e008657. PubMed ID: 32093514
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Six-month outcomes of the XINSORB bioresorbable sirolimus-eluting scaffold in treating single de novo lesions in human coronary artery.
    Wu Y; Shen L; Ge L; Wang Q; Qian J; Zhang F; Yao K; Huang D; Chen Y; Ge J
    Catheter Cardiovasc Interv; 2016 Mar; 87 Suppl 1():630-7. PubMed ID: 26864162
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Multiple Mechanisms in 1 In-Stent Restenosis Assessed by Optical Coherence Tomography.
    Lu WD; Huang CW; Li YH; Chen JY
    JACC Cardiovasc Interv; 2017 Nov; 10(22):2340-2341. PubMed ID: 29102578
    [No Abstract]   [Full Text] [Related]  

  • 25. First-in-man study evaluating the safety and efficacy of a second generation biodegradable polymer sirolimus-eluting stent in the treatment of patients with de novo coronary lesions: clinical, Angiographic, and OCT outcomes of CREDIT-1.
    Wang G; Sun Z; Jin Q; Xu K; Li Y; Wang X; Ma Y; Liu H; Zhao X; Wang B; Deng J; Guan S; Ge M; Wang X; Xu B; Han Y
    Catheter Cardiovasc Interv; 2015 Mar; 85 Suppl 1():744-51. PubMed ID: 25630447
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The wound healing response after implantation of a drug-eluting stent is impaired persistently in the long term.
    Nasuno T; Tokura M; Kageyama M; Toyoda S; Sakuma M; Komatsu T; Taguchi I; Abe S; Inoue T
    Heart Vessels; 2016 Jun; 31(6):985-9. PubMed ID: 25939630
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Serial invasive imaging follow-up of the first clinical experience with the Magmaris magnesium bioresorbable scaffold.
    Tovar Forero MN; van Zandvoort L; Masdjedi K; Diletti R; Wilschut J; de Jaegere PP; Zijlstra F; Van Mieghem NM; Daemen J
    Catheter Cardiovasc Interv; 2020 Feb; 95(2):226-231. PubMed ID: 31033171
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A next-generation bioresorbable coronary scaffold system: from bench to first clinical evaluation: 6- and 12-month clinical and multimodality imaging results.
    Verheye S; Ormiston JA; Stewart J; Webster M; Sanidas E; Costa R; Costa JR; Chamie D; Abizaid AS; Pinto I; Morrison L; Toyloy S; Bhat V; Yan J; Abizaid A
    JACC Cardiovasc Interv; 2014 Jan; 7(1):89-99. PubMed ID: 24139932
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Neoatherosclerosis causing occlusive in-stent restenosis: Impact of intracoronary imaging in the intensity of lipid-lowering therapy.
    Martí D; López E; Álvarez S; Palazuelos J; Rada I; Alfonso F
    Cardiovasc Revasc Med; 2016 Dec; 17(8):584-585. PubMed ID: 27743816
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Restenosis After Drug-Eluting Stent Implantation in a Patient With Polycythemia Vera: Optical Coherence Tomography and Pathological Findings.
    Fujino A; Hao H; Kajimoto N; Kawakami R; Imanaka T; Fujii K; Abe T; Ishihara M; Hirota S
    JACC Cardiovasc Interv; 2015 Jun; 8(7):e111-2. PubMed ID: 26003023
    [No Abstract]   [Full Text] [Related]  

  • 31. Calcified Neoatherosclerosis Causing "Undilatable" In-Stent Restenosis: Insights of Optical Coherence Tomography and Role of Rotational Atherectomy.
    Bastante T; Rivero F; Cuesta J; Alfonso F
    JACC Cardiovasc Interv; 2015 Dec; 8(15):2039-2040. PubMed ID: 26738675
    [No Abstract]   [Full Text] [Related]  

  • 32. Subacute thrombosis of a bioresorbable vascular scaffold implanted for recurrent in-stent restenosis.
    Rivero F; Benedicto A; Bastante T; Cuesta J; Diego G; Alfonso F
    EuroIntervention; 2015 Nov; 11(7):780. PubMed ID: 25308302
    [No Abstract]   [Full Text] [Related]  

  • 33. "Baumkuchen" Structure Assessed by Optical Coherence Tomography After 15 Years of Bare-Metal Stent Implantation.
    Yukimitsu N; Hioki H; Kyono H; Nagura F; Kozuma K
    JACC Cardiovasc Interv; 2018 Dec; 11(23):2431-2432. PubMed ID: 30448168
    [No Abstract]   [Full Text] [Related]  

  • 34. Migrated remnant bioresorbable scaffolds in a left main bifurcation lesion: Insights from optical coherence tomography.
    Seo J; Kim Y; Kim BK; Hong SJ; Ahn CM; Kim JS; Cho DK; Ko YG; Choi D; Hong MK; Jang Y
    Cardiol J; 2020; 27(2):208-209. PubMed ID: 32463107
    [No Abstract]   [Full Text] [Related]  

  • 35. Validation and application of OCT tissue attenuation index for the detection of neointimal foam cells.
    Nicol P; Hoppman P; Euller K; Xhepa E; Lenz T; Rai H; Jinnouchi H; Bulin A; Castellanos MI; Lahmann AL; Koppara T; Kastrati A; Joner M
    Int J Cardiovasc Imaging; 2021 Jan; 37(1):25-35. PubMed ID: 32761285
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An Unusual Complication After Bioresorbable Scaffold Implantation: Visualization of Intramural Hematoma by Optical Coherence Tomography.
    Zhang BC; Karanasos A; Royaards KJ; Ligthart J; Regar E
    JACC Cardiovasc Interv; 2015 Aug; 8(9):e143-e145. PubMed ID: 26292606
    [No Abstract]   [Full Text] [Related]  

  • 37. Very Late Restenosis After Bioresorbable Scaffold Implantation Due to Simultaneous External Compression of the Scaffold and Intrascaffold Tissue Growth.
    Tanaka A; Ruparelia N; Kawamoto H; Latib A; Colombo A
    JACC Cardiovasc Interv; 2016 Jan; 9(2):e15-7. PubMed ID: 26723762
    [No Abstract]   [Full Text] [Related]  

  • 38. First serial assessment at 6 months and 2 years of the second generation of absorb everolimus-eluting bioresorbable vascular scaffold: a multi-imaging modality study.
    Ormiston JA; Serruys PW; Onuma Y; van Geuns RJ; de Bruyne B; Dudek D; Thuesen L; Smits PC; Chevalier B; McClean D; Koolen J; Windecker S; Whitbourn R; Meredith I; Dorange C; Veldhof S; Hebert KM; Rapoza R; Garcia-Garcia HM
    Circ Cardiovasc Interv; 2012 Oct; 5(5):620-32. PubMed ID: 23048057
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Late stent thrombosis after the use of a bioresorbable vascular scaffold for the treatment of in-stent restenosis.
    Lee WC; Fang HY; Fang CY
    Coron Artery Dis; 2016 Dec; 27(8):709-710. PubMed ID: 27379437
    [No Abstract]   [Full Text] [Related]  

  • 40. Fate of Bioresorbable Vascular Scaffold Metallic Radio-Opaque Markers at the Site of Implantation After Bioresorption.
    Suwannasom P; Onuma Y; Campos CM; Nakatani S; Ishibashi Y; Tateishi H; Grundeken MJ; Stanetic B; Nieman K; Jonker H; Garcia-Garcia HM; Serruys PW;
    JACC Cardiovasc Interv; 2015 Jul; 8(8):1130-1132. PubMed ID: 26205450
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.