These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
367 related articles for article (PubMed ID: 27228413)
1. Critical Role of Redox Mediator in Suppressing Charging Instabilities of Lithium-Oxygen Batteries. Liang Z; Lu YC J Am Chem Soc; 2016 Jun; 138(24):7574-83. PubMed ID: 27228413 [TBL] [Abstract][Full Text] [Related]
2. Intensive Study on the Catalytical Behavior of N-Methylphenothiazine as a Soluble Mediator to Oxidize the Li Feng N; Mu X; Zhang X; He P; Zhou H ACS Appl Mater Interfaces; 2017 Feb; 9(4):3733-3739. PubMed ID: 28079362 [TBL] [Abstract][Full Text] [Related]
3. How To Improve Capacity and Cycling Stability for Next Generation Li-O2 Batteries: Approach with a Solid Electrolyte and Elevated Redox Mediator Concentrations. Bergner BJ; Busche MR; Pinedo R; Berkes BB; Schröder D; Janek J ACS Appl Mater Interfaces; 2016 Mar; 8(12):7756-65. PubMed ID: 26942895 [TBL] [Abstract][Full Text] [Related]
4. Chemical and Electrochemical Differences in Nonaqueous Li-O2 and Na-O2 Batteries. McCloskey BD; Garcia JM; Luntz AC J Phys Chem Lett; 2014 Apr; 5(7):1230-5. PubMed ID: 26274476 [TBL] [Abstract][Full Text] [Related]
5. A new thin layer cell for battery related DEMS-experiments: the activity of redox mediators in the Li-O Bawol PP; Reinsberg P; Bondue CJ; Abd-El-Latif AA; Königshoven P; Baltruschat H Phys Chem Chem Phys; 2018 Aug; 20(33):21447-21456. PubMed ID: 30087964 [TBL] [Abstract][Full Text] [Related]
6. Highly Efficient Br Xin X; Ito K; Kubo Y ACS Appl Mater Interfaces; 2017 Aug; 9(31):25976-25984. PubMed ID: 28714666 [TBL] [Abstract][Full Text] [Related]
7. Nanostructured Metal Carbides for Aprotic Li-O2 Batteries: New Insights into Interfacial Reactions and Cathode Stability. Kundu D; Black R; Adams B; Harrison K; Zavadil K; Nazar LF J Phys Chem Lett; 2015 Jun; 6(12):2252-8. PubMed ID: 26266600 [TBL] [Abstract][Full Text] [Related]
8. Mechanism for Preserving Volatile Nitrogen Dioxide and Sustainable Redox Mediation in the Nonaqueous Lithium-Oxygen Battery. Ahn SM; Kim DY; Suk J; Kang Y; Kim HK; Kim DW ACS Appl Mater Interfaces; 2021 Feb; 13(7):8159-8168. PubMed ID: 33586947 [TBL] [Abstract][Full Text] [Related]
9. LiF Protective Layer on a Li Anode: Toward Improving the Performance of Li-O Yoo E; Zhou H ACS Appl Mater Interfaces; 2020 Apr; 12(16):18490-18495. PubMed ID: 32212676 [TBL] [Abstract][Full Text] [Related]
10. Enabling catalytic oxidation of Li2O2 at the liquid-solid interface: the evolution of an aprotic Li-O2 battery. Feng N; He P; Zhou H ChemSusChem; 2015 Feb; 8(4):600-2. PubMed ID: 25641874 [TBL] [Abstract][Full Text] [Related]
11. A highly efficient Li Hase Y; Seki J; Shiga T; Mizuno F; Nishikoori H; Iba H; Takechi K Chem Commun (Camb); 2016 Oct; 52(82):12151-12154. PubMed ID: 27549372 [TBL] [Abstract][Full Text] [Related]
12. Dynamic Changes in Charge Transfer Resistances during Cycling of Aprotic Li-O Morimoto K; Kusumoto T; Nishioka K; Kamiya K; Mukouyama Y; Nakanishi S ACS Appl Mater Interfaces; 2020 Sep; 12(38):42803-42810. PubMed ID: 32808758 [TBL] [Abstract][Full Text] [Related]
13. Li-O Li Y; Dong S; Chen B; Lu C; Liu K; Zhang Z; Du H; Wang X; Chen X; Zhou X; Cui G J Phys Chem Lett; 2017 Sep; 8(17):4218-4225. PubMed ID: 28825835 [TBL] [Abstract][Full Text] [Related]
14. Electrochemical Oxidation of Li Cui Q; Zhang P; Wang J ACS Appl Mater Interfaces; 2020 Feb; 12(5):6627-6632. PubMed ID: 31922718 [TBL] [Abstract][Full Text] [Related]
15. Understanding the fundamentals of redox mediators in Li-O2 batteries: a case study on nitroxides. Bergner BJ; Hofmann C; Schürmann A; Schröder D; Peppler K; Schreiner PR; Janek J Phys Chem Chem Phys; 2015 Dec; 17(47):31769-79. PubMed ID: 26563563 [TBL] [Abstract][Full Text] [Related]
16. TEMPO: a mobile catalyst for rechargeable Li-O₂ batteries. Bergner BJ; Schürmann A; Peppler K; Garsuch A; Janek J J Am Chem Soc; 2014 Oct; 136(42):15054-64. PubMed ID: 25255228 [TBL] [Abstract][Full Text] [Related]
17. Controlling Solution-Mediated Reaction Mechanisms of Oxygen Reduction Using Potential and Solvent for Aprotic Lithium-Oxygen Batteries. Kwabi DG; Tułodziecki M; Pour N; Itkis DM; Thompson CV; Shao-Horn Y J Phys Chem Lett; 2016 Apr; 7(7):1204-12. PubMed ID: 26949979 [TBL] [Abstract][Full Text] [Related]
18. Limitations in Rechargeability of Li-O2 Batteries and Possible Origins. McCloskey BD; Bethune DS; Shelby RM; Mori T; Scheffler R; Speidel A; Sherwood M; Luntz AC J Phys Chem Lett; 2012 Oct; 3(20):3043-7. PubMed ID: 26292247 [TBL] [Abstract][Full Text] [Related]
19. Thermal and electrochemical decomposition of lithium peroxide in non-catalyzed carbon cathodes for Li-air batteries. Beyer H; Meini S; Tsiouvaras N; Piana M; Gasteiger HA Phys Chem Chem Phys; 2013 Jul; 15(26):11025-37. PubMed ID: 23715054 [TBL] [Abstract][Full Text] [Related]
20. Why charging Li-air batteries with current low-voltage mediators is slow and singlet oxygen does not explain degradation. Ahn S; Zor C; Yang S; Lagnoni M; Dewar D; Nimmo T; Chau C; Jenkins M; Kibler AJ; Pateman A; Rees GJ; Gao X; Adamson P; Grobert N; Bertei A; Johnson LR; Bruce PG Nat Chem; 2023 Jul; 15(7):1022-1029. PubMed ID: 37264102 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]