These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 27228550)

  • 41. Cross-link assisted spatial proteomics to map sub-organelle proteomes and membrane protein topologies.
    Zhu Y; Akkaya KC; Ruta J; Yokoyama N; Wang C; Ruwolt M; Lima DB; Lehmann M; Liu F
    Nat Commun; 2024 Apr; 15(1):3290. PubMed ID: 38632225
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Proteomics technologies for the global identification and quantification of proteins.
    Brewis IA; Brennan P
    Adv Protein Chem Struct Biol; 2010; 80():1-44. PubMed ID: 21109216
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Identification of the targets of biologically active small molecules using quantitative proteomics.
    Vendrell-Navarro G; Brockmeyer A; Waldmann H; Janning P; Ziegler S
    Methods Mol Biol; 2015; 1263():263-86. PubMed ID: 25618352
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Identification of novel proteins affected by rotenone in mitochondria of dopaminergic cells.
    Jin J; Davis J; Zhu D; Kashima DT; Leroueil M; Pan C; Montine KS; Zhang J
    BMC Neurosci; 2007 Aug; 8():67. PubMed ID: 17705834
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Global proteome analyses of SILAC-labeled skin cells.
    Sprenger A; Küttner V; Bruckner-Tuderman L; Dengjel J
    Methods Mol Biol; 2013; 961():179-91. PubMed ID: 23325643
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Label-Free Quantitative Analysis of Mitochondrial Proteomes Using the Multienzyme Digestion-Filter Aided Sample Preparation (MED-FASP) and "Total Protein Approach".
    Wiśniewski JR
    Methods Mol Biol; 2017; 1567():69-77. PubMed ID: 28276014
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Quantitative Proteomics Analysis of Leukemia Cells.
    Halbach S; Dengjel J; Brummer T
    Methods Mol Biol; 2016; 1465():139-48. PubMed ID: 27581145
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Isotopically-Labeled Iodoacetamide-Alkyne Probes for Quantitative Cysteine-Reactivity Profiling.
    Abo M; Li C; Weerapana E
    Mol Pharm; 2018 Mar; 15(3):743-749. PubMed ID: 29172527
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Quantitative analysis of differential protein expression in cervical carcinoma cells after zeylenone treatment by stable isotope labeling with amino acids in cell culture.
    Zhang L; Jin J; Zhang L; Hu R; Gao L; Huo X; Liu D; Ma X; Wang C; Han J; Li L; Sun X; Cao L
    J Proteomics; 2015 Aug; 126():279-87. PubMed ID: 26130516
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A practical recipe for stable isotope labeling by amino acids in cell culture (SILAC).
    Ong SE; Mann M
    Nat Protoc; 2006; 1(6):2650-60. PubMed ID: 17406521
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Proteomic analysis and functional characterization of mouse brain mitochondria during aging reveal alterations in energy metabolism.
    Stauch KL; Purnell PR; Villeneuve LM; Fox HS
    Proteomics; 2015 May; 15(9):1574-86. PubMed ID: 25546256
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Stable isotope labeling by amino acids in cell culture (SILAC) applied to quantitative proteomics of Bacillus subtilis.
    Soufi B; Kumar C; Gnad F; Mann M; Mijakovic I; Macek B
    J Proteome Res; 2010 Jul; 9(7):3638-46. PubMed ID: 20509597
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Vitrification at the pre-antral stage transiently alters inner mitochondrial membrane potential but proteome of in vitro grown and matured mouse oocytes appears unaffected.
    Demant M; Trapphoff T; Fröhlich T; Arnold GJ; Eichenlaub-Ritter U
    Hum Reprod; 2012 Apr; 27(4):1096-111. PubMed ID: 22258663
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Mass spectrometry-based methods for analysing the mitochondrial interactome in mammalian cells.
    Koshiba T; Kosako H
    J Biochem; 2020 Mar; 167(3):225-231. PubMed ID: 31647556
    [TBL] [Abstract][Full Text] [Related]  

  • 55. [A quantitative analysis of mitochondrial protein differential expressions in hydroxycamptothecin-treated hepatoma cells].
    Yan YR; Fu YR; Qiu ZY
    Zhonghua Gan Zang Bing Za Zhi; 2008 Feb; 16(2):109-13. PubMed ID: 18304426
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Experimental Null Method to Guide the Development of Technical Procedures and to Control False-Positive Discovery in Quantitative Proteomics.
    Shen X; Hu Q; Li J; Wang J; Qu J
    J Proteome Res; 2015 Oct; 14(10):4147-57. PubMed ID: 26051676
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Proteomics of yeast mitochondria.
    Reinders J; Sickmann A
    Methods Mol Biol; 2007; 372():543-57. PubMed ID: 18314750
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Quantitative proteome analysis using isotope-coded affinity tags and mass spectrometry.
    Shiio Y; Aebersold R
    Nat Protoc; 2006; 1(1):139-45. PubMed ID: 17406225
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Phosphoproteome analysis of HeLa cells using stable isotope labeling with amino acids in cell culture (SILAC).
    Amanchy R; Kalume DE; Iwahori A; Zhong J; Pandey A
    J Proteome Res; 2005; 4(5):1661-71. PubMed ID: 16212419
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The use of a quantitative cysteinyl-peptide enrichment technology for high-throughput quantitative proteomics.
    Liu T; Qian WJ; Camp DG; Smith RD
    Methods Mol Biol; 2007; 359():107-24. PubMed ID: 17484113
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.