BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1414 related articles for article (PubMed ID: 27228792)

  • 1. Heterogeneity in Cancer Metabolism: New Concepts in an Old Field.
    Gentric G; Mieulet V; Mechta-Grigoriou F
    Antioxid Redox Signal; 2017 Mar; 26(9):462-485. PubMed ID: 27228792
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tumor microenvironment and metabolic synergy in breast cancers: critical importance of mitochondrial fuels and function.
    Martinez-Outschoorn U; Sotgia F; Lisanti MP
    Semin Oncol; 2014 Apr; 41(2):195-216. PubMed ID: 24787293
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The dichotomous role of the glycolytic metabolism pathway in cancer metastasis: Interplay with the complex tumor microenvironment and novel therapeutic strategies.
    El Hassouni B; Granchi C; Vallés-Martí A; Supadmanaba IGP; Bononi G; Tuccinardi T; Funel N; Jimenez CR; Peters GJ; Giovannetti E; Minutolo F
    Semin Cancer Biol; 2020 Feb; 60():238-248. PubMed ID: 31445217
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mitochondrial fission induces glycolytic reprogramming in cancer-associated myofibroblasts, driving stromal lactate production, and early tumor growth.
    Guido C; Whitaker-Menezes D; Lin Z; Pestell RG; Howell A; Zimmers TA; Casimiro MC; Aquila S; Ando' S; Martinez-Outschoorn UE; Sotgia F; Lisanti MP
    Oncotarget; 2012 Aug; 3(8):798-810. PubMed ID: 22878233
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic reprogramming: the emerging concept and associated therapeutic strategies.
    Yoshida GJ
    J Exp Clin Cancer Res; 2015 Oct; 34():111. PubMed ID: 26445347
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reprogramming Oxidative Phosphorylation in Cancer: A Role for RNA-Binding Proteins.
    Esparza-Moltó PB; Cuezva JM
    Antioxid Redox Signal; 2020 Nov; 33(13):927-945. PubMed ID: 31910046
    [No Abstract]   [Full Text] [Related]  

  • 7. Mitochondrial Transfer in Cancer: A Comprehensive Review.
    Zampieri LX; Silva-Almeida C; Rondeau JD; Sonveaux P
    Int J Mol Sci; 2021 Mar; 22(6):. PubMed ID: 33806730
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Warburg effect in tumor progression: mitochondrial oxidative metabolism as an anti-metastasis mechanism.
    Lu J; Tan M; Cai Q
    Cancer Lett; 2015 Jan; 356(2 Pt A):156-64. PubMed ID: 24732809
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fundamentals of cancer metabolism.
    DeBerardinis RJ; Chandel NS
    Sci Adv; 2016 May; 2(5):e1600200. PubMed ID: 27386546
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Choosing between glycolysis and oxidative phosphorylation: a tumor's dilemma?
    Jose C; Bellance N; Rossignol R
    Biochim Biophys Acta; 2011 Jun; 1807(6):552-61. PubMed ID: 20955683
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Targeting respiratory complex I to prevent the Warburg effect.
    Vatrinet R; Iommarini L; Kurelac I; De Luise M; Gasparre G; Porcelli AM
    Int J Biochem Cell Biol; 2015 Jun; 63():41-5. PubMed ID: 25668477
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The roles of sirtuins family in cell metabolism during tumor development.
    Zhu S; Dong Z; Ke X; Hou J; Zhao E; Zhang K; Wang F; Yang L; Xiang Z; Cui H
    Semin Cancer Biol; 2019 Aug; 57():59-71. PubMed ID: 30453040
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of microRNAs in the Warburg effect and mitochondrial metabolism in cancer.
    Jin LH; Wei C
    Asian Pac J Cancer Prev; 2014; 15(17):7015-9. PubMed ID: 25227784
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Availability of the key metabolic substrates dictates the respiratory response of cancer cells to the mitochondrial uncoupling.
    Zhdanov AV; Waters AH; Golubeva AV; Dmitriev RI; Papkovsky DB
    Biochim Biophys Acta; 2014 Jan; 1837(1):51-62. PubMed ID: 23891695
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mitochondrial pyruvate carrier function determines cell stemness and metabolic reprogramming in cancer cells.
    Li X; Han G; Li X; Kan Q; Fan Z; Li Y; Ji Y; Zhao J; Zhang M; Grigalavicius M; Berge V; Goscinski MA; Nesland JM; Suo Z
    Oncotarget; 2017 Jul; 8(28):46363-46380. PubMed ID: 28624784
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolic reprogramming of carcinoma-associated fibroblasts and its impact on metabolic heterogeneity of tumors.
    Wu D; Zhuo L; Wang X
    Semin Cell Dev Biol; 2017 Apr; 64():125-131. PubMed ID: 27833036
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiparameter metabolic analysis reveals a close link between attenuated mitochondrial bioenergetic function and enhanced glycolysis dependency in human tumor cells.
    Wu M; Neilson A; Swift AL; Moran R; Tamagnine J; Parslow D; Armistead S; Lemire K; Orrell J; Teich J; Chomicz S; Ferrick DA
    Am J Physiol Cell Physiol; 2007 Jan; 292(1):C125-36. PubMed ID: 16971499
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Waves of gene regulation suppress and then restore oxidative phosphorylation in cancer cells.
    Smolková K; Plecitá-Hlavatá L; Bellance N; Benard G; Rossignol R; Ježek P
    Int J Biochem Cell Biol; 2011 Jul; 43(7):950-68. PubMed ID: 20460169
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The causes of cancer revisited: "mitochondrial malignancy" and ROS-induced oncogenic transformation - why mitochondria are targets for cancer therapy.
    Ralph SJ; Rodríguez-Enríquez S; Neuzil J; Saavedra E; Moreno-Sánchez R
    Mol Aspects Med; 2010 Apr; 31(2):145-70. PubMed ID: 20206201
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Emerging concepts in bioenergetics and cancer research: metabolic flexibility, coupling, symbiosis, switch, oxidative tumors, metabolic remodeling, signaling and bioenergetic therapy.
    Obre E; Rossignol R
    Int J Biochem Cell Biol; 2015 Feb; 59():167-81. PubMed ID: 25542180
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 71.