These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 2722890)

  • 21. [Morphological transformation of limb bones with growth].
    Takeuchi S
    Kaibogaku Zasshi; 2000 Apr; 75(2):207-14. PubMed ID: 10824512
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Differential response of rat limb bones to strenuous exercise.
    Li KC; Zernicke RF; Barnard RJ; Li AF
    J Appl Physiol (1985); 1991 Feb; 70(2):554-60. PubMed ID: 2022546
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Deflection and stress distribution around mini-screw implants: a finite element investigation into the effect of cortical bone thickness, force magnitude and direction.
    Meher AH; Shrivastav SS; Vibhute PJ; Hazarey PV
    J Orthod; 2012 Dec; 39(4):249-55. PubMed ID: 23269688
    [TBL] [Abstract][Full Text] [Related]  

  • 24. New insights into long-bone biomechanics: are limb safety factors invariable across mammalian species?
    Kokshenev VB
    J Biomech; 2007; 40(13):2911-8. PubMed ID: 17448481
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Transient study of couple stress effects in compact bone: torsion.
    Yang JF; Lakes RS
    J Biomech Eng; 1981 Nov; 103(4):275-9. PubMed ID: 7311494
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Allometric scaling and biomechanical behavior of the bone tissue: an experimental intraspecific investigation.
    Brianza SZ; D'Amelio P; Pugno N; Delise M; Bignardi C; Isaia G
    Bone; 2007 Jun; 40(6):1635-42. PubMed ID: 17400044
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Influence of implant-abutment connection mode on stress distribution in peri-implant bone].
    Liu XJ; Li ZY; Xia HB
    Zhonghua Kou Qiang Yi Xue Za Zhi; 2008 Jan; 43(1):50-3. PubMed ID: 18380978
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biomechanical analysis of stresses to the fifth metatarsal bone during sports maneuvers: implications for fifth metatarsal fractures.
    Orendurff MS; Rohr ES; Segal AD; Medley JW; Green JR; Kadel NJ
    Phys Sportsmed; 2009 Jun; 37(2):87-92. PubMed ID: 20048514
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The behaviour of fatigue-induced microdamage in compact bone samples from control and ovariectomised sheep.
    Kennedy OD; Brennan O; Mauer P; O'Brien FJ; Rackard SM; Taylor D; Lee TC
    Stud Health Technol Inform; 2008; 133():148-55. PubMed ID: 18376023
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cement line motion in bone.
    Lakes R; Saha S
    Science; 1979 May; 204(4392):501-3. PubMed ID: 432653
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Muscle force regulates bone shaping for optimal load-bearing capacity during embryogenesis.
    Sharir A; Stern T; Rot C; Shahar R; Zelzer E
    Development; 2011 Aug; 138(15):3247-59. PubMed ID: 21750035
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The mechanical behaviour of cancellous bone.
    Gibson LJ
    J Biomech; 1985; 18(5):317-28. PubMed ID: 4008502
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bone curvature: sacrificing strength for load predictability?
    Bertram JE; Biewener AA
    J Theor Biol; 1988 Mar; 131(1):75-92. PubMed ID: 3419194
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Optimum strengths for bones liable to fatigue and accidental fracture.
    Alexander RM
    J Theor Biol; 1984 Aug; 109(4):621-36. PubMed ID: 6482475
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Temporal and thermal effects on deformation potentials in bone.
    Steinberg ME; Finnegan WJ; Labosky DA; Black J
    Calcif Tissue Res; 1976 Dec; 21(3):135-44. PubMed ID: 1000333
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mechanical properties of hydroxyapatite-reinforced gelatin as a model system of bone.
    Sasaki N; Umeda H; Okada S; Kojima R; Fukuda A
    Biomaterials; 1989 Mar; 10(2):129-32. PubMed ID: 2706301
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Studies on mechanical strength of bone. I. Torsional strength of normal rabbit tibio-fibular bone.
    Paavolainen P
    Acta Orthop Scand; 1978 Dec; 49(6):497-505. PubMed ID: 735775
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mechanical Stress Redistribution in the First Metatarsal Bone After Autologous Bone Harvesting.
    Bayod López J; Becerro de Bengoa Vallejo R; Losa Iglesias ME; Doblaré M
    J Am Podiatr Med Assoc; 2017 Nov; 107(6):497-510. PubMed ID: 29252028
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A model for mechanotransduction in bone cells: the load-bearing mechanosomes.
    Pavalko FM; Norvell SM; Burr DB; Turner CH; Duncan RL; Bidwell JP
    J Cell Biochem; 2003 Jan; 88(1):104-12. PubMed ID: 12461779
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Model to characterize strain generated potentials in bone.
    Mahmud FA; Hastings GW; Martini M
    J Biomed Eng; 1988 Jan; 10(1):54-6. PubMed ID: 3347035
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.