These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 2722892)

  • 1. An evaluation of a micropolar model for blood flow through an idealized stenosis.
    Hogan HA; Henriksen M
    J Biomech; 1989; 22(3):211-8. PubMed ID: 2722892
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pulsatile flow of non-Newtonian blood fluid inside stenosed arteries: Investigating the effects of viscoelastic and elastic walls, arteriosclerosis, and polycythemia diseases.
    Nejad AA; Talebi Z; Cheraghali D; Shahbani-Zahiri A; Norouzi M
    Comput Methods Programs Biomed; 2018 Feb; 154():109-122. PubMed ID: 29249336
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Numerical simulation of unsteady micropolar hemodynamics in a tapered catheterized artery with a combination of stenosis and aneurysm.
    Zaman A; Ali N; Anwar Bég O
    Med Biol Eng Comput; 2016 Sep; 54(9):1423-36. PubMed ID: 26541601
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flow of couple stress fluid through stenotic blood vessels.
    Srivastava LM
    J Biomech; 1985; 18(7):479-85. PubMed ID: 4030804
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical technique of blood flow through catheterized arteries with overlapping stenosis.
    El Kot MA; Abbas W
    Comput Methods Biomech Biomed Engin; 2017 Jan; 20(1):45-58. PubMed ID: 27314885
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mathematical modelling of the human cardiovascular system in the presence of stenosis.
    Sud VK; Srinivasan RS; Charles JB; Bungo MW
    Phys Med Biol; 1993 Mar; 38(3):369-78. PubMed ID: 8451280
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flow of micropolar fluid through a tube with stenosis.
    Devanathan R; Parvathamma S
    Med Biol Eng Comput; 1983 Jul; 21(4):438-45. PubMed ID: 6888011
    [No Abstract]   [Full Text] [Related]  

  • 8. Simulation of a pulsatile non-Newtonian flow past a stenosed 2D artery with atherosclerosis.
    Tian FB; Zhu L; Fok PW; Lu XY
    Comput Biol Med; 2013 Sep; 43(9):1098-113. PubMed ID: 23930803
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hemodynamic analysis in an idealized artery tree: differences in wall shear stress between Newtonian and non-Newtonian blood models.
    Weddell JC; Kwack J; Imoukhuede PI; Masud A
    PLoS One; 2015; 10(4):e0124575. PubMed ID: 25897758
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A boundary layer model for wall shear stress in arterial stenosis.
    Provenzano PP; Rutland CJ
    Biorheology; 2002; 39(6):743-54. PubMed ID: 12454440
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Non-Newtonian effects of blood flow on hemodynamics in distal vascular graft anastomoses.
    Chen J; Lu XY; Wang W
    J Biomech; 2006; 39(11):1983-95. PubMed ID: 16055134
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental and CFD flow studies in an intracranial aneurysm model with Newtonian and non-Newtonian fluids.
    Frolov SV; Sindeev SV; Liepsch D; Balasso A
    Technol Health Care; 2016 May; 24(3):317-33. PubMed ID: 26835725
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flow in arteries in the presence of stenosis.
    Misra JC; Chakravarty S
    J Biomech; 1986; 19(11):907-18. PubMed ID: 3793739
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic response of wall shear stress on the stenosed artery.
    Sen S; Chakravarty S
    Comput Methods Biomech Biomed Engin; 2009 Oct; 12(5):523-9. PubMed ID: 19294542
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the characterization of a non-Newtonian blood analog and its response to pulsatile flow downstream of a simplified stenosis.
    Walker AM; Johnston CR; Rival DE
    Ann Biomed Eng; 2014 Jan; 42(1):97-109. PubMed ID: 23975383
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of Newtonian and non-Newtonian flows in a two-dimensional carotid artery model using the lattice Boltzmann method.
    Boyd J; Buick JM
    Phys Med Biol; 2007 Oct; 52(20):6215-28. PubMed ID: 17921581
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wall shear stress gradient analysis within an idealized stenosis using non-Newtonian flow.
    Schirmer CM; Malek AM
    Neurosurgery; 2007 Oct; 61(4):853-63; discussion 863-4. PubMed ID: 17986948
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of Side Branches on the Computation of Fractional Flow in Intracranial Arterial Stenosis Using the Computational Fluid Dynamics Method.
    Liu H; Lan L; Leng X; Ip HL; Leung TWH; Wang D; Wong KS
    J Stroke Cerebrovasc Dis; 2018 Jan; 27(1):44-52. PubMed ID: 29107636
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of non-Newtonian behavior of blood on flow in an elastic artery model.
    Dutta A; Tarbell JM
    J Biomech Eng; 1996 Feb; 118(1):111-9. PubMed ID: 8833082
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Examination of nanoparticles as a drug carrier on blood flow through catheterized composite stenosed artery with permeable walls.
    Ijaz S; Nadeem S
    Comput Methods Programs Biomed; 2016 Sep; 133():83-94. PubMed ID: 27393802
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.