These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 27228964)

  • 21. Azimuth coding in primary auditory cortex of the cat. II. Relative latency and interspike interval representation.
    Eggermont JJ
    J Neurophysiol; 1998 Oct; 80(4):2151-61. PubMed ID: 9772268
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Neuronal responses in cat primary auditory cortex to electrical cochlear stimulation. I. Intensity dependence of firing rate and response latency.
    Raggio MW; Schreiner CE
    J Neurophysiol; 1994 Nov; 72(5):2334-59. PubMed ID: 7884463
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Frequency response properties of primary afferent neurons in the posterior lateral line system of larval zebrafish.
    Levi R; Akanyeti O; Ballo A; Liao JC
    J Neurophysiol; 2015 Jan; 113(2):657-68. PubMed ID: 25355959
    [TBL] [Abstract][Full Text] [Related]  

  • 24. N100 evoked potential latency variation and startle in schizophrenia.
    Young KA; Smith M; Rawls T; Elliott DB; Russell IS; Hicks PB
    Neuroreport; 2001 Mar; 12(4):767-73. PubMed ID: 11277581
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Reliability of monosynaptic sensory transmission in brain stem neurons in vitro.
    Doyle MW; Andresen MC
    J Neurophysiol; 2001 May; 85(5):2213-23. PubMed ID: 11353036
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Electrical stimulation of the auditory nerve. III. Response initiation sites and temporal fine structure.
    Javel E; Shepherd RK
    Hear Res; 2000 Feb; 140(1-2):45-76. PubMed ID: 10675635
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Temporal features of the responses of primate spinothalamic neurons to noxious thermal stimulation of hairy and glabrous skin.
    Surmeier DJ; Honda CN; Willis WD
    J Neurophysiol; 1986 Aug; 56(2):351-69. PubMed ID: 3760925
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Chronometry on Spike-LFP Responses Reveals the Functional Neural Circuitry of Early Auditory Cortex Underlying Sound Processing and Discrimination.
    Banerjee A; Kikuchi Y; Mishkin M; Rauschecker JP; Horwitz B
    eNeuro; 2018; 5(3):. PubMed ID: 29971252
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Startle produces early response latencies that are distinct from stimulus intensity effects.
    Carlsen AN; Dakin CJ; Chua R; Franks IM
    Exp Brain Res; 2007 Jan; 176(2):199-205. PubMed ID: 16874516
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Spike-timing precision underlies the coding efficiency of auditory receptor neurons.
    Rokem A; Watzl S; Gollisch T; Stemmler M; Herz AV; Samengo I
    J Neurophysiol; 2006 Apr; 95(4):2541-52. PubMed ID: 16354733
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Antidromic activation of spikes with bimodal and trimodal latencies in the olfactory bulb of rabbits.
    Westecker ME; Manns D
    Brain Res; 1983 Dec; 288(1-2):119-30. PubMed ID: 6198022
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of odor stimulation on antidromic spikes in olfactory sensory neurons.
    Scott JW; Sherrill L
    J Neurophysiol; 2008 Dec; 100(6):3074-85. PubMed ID: 18842957
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Serotonin shifts first-spike latencies of inferior colliculus neurons.
    Hurley LM; Pollak GD
    J Neurosci; 2005 Aug; 25(34):7876-86. PubMed ID: 16120790
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cranial components of startle behavior in larval and adult lampreys.
    Currie SN; Carlsen RC
    Neuroscience; 1988 Feb; 24(2):709-18. PubMed ID: 3362357
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Prestimulation-induced modulation of the P300 component of event related potentials accompanying startle in children.
    Sugawara M; Sadeghpour M; De Traversay J; Ornitz EM
    Electroencephalogr Clin Neurophysiol; 1994 Mar; 90(3):201-13. PubMed ID: 7511502
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Sensory gating of the P13 midlatency auditory evoked potential and the startle response in the rat.
    Miyazato H; Skinner RD; Garcia-Rill E
    Brain Res; 1999 Mar; 822(1-2):60-71. PubMed ID: 10082884
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Functional development and regeneration of hair cells in the zebrafish lateral line.
    Hardy K; Amariutei AE; De Faveri F; Hendry A; Marcotti W; Ceriani F
    J Physiol; 2021 Aug; 599(16):3913-3936. PubMed ID: 34143497
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Multisegmental analyses of acoustic startle in the flying cricket (Teleogryllus oceanicus): kinematics and electromyography.
    Miles CI; May ML; Holbrook EH; Hoy RR
    J Exp Biol; 1992 Aug; 169():19-36. PubMed ID: 1402606
    [TBL] [Abstract][Full Text] [Related]  

  • 39. First-spike latency of auditory neurons revisited.
    Heil P
    Curr Opin Neurobiol; 2004 Aug; 14(4):461-7. PubMed ID: 15321067
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dejittered spike-conditioned stimulus waveforms yield improved estimates of neuronal feature selectivity and spike-timing precision of sensory interneurons.
    Aldworth ZN; Miller JP; Gedeon T; Cummins GI; Dimitrov AG
    J Neurosci; 2005 Jun; 25(22):5323-32. PubMed ID: 15930380
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.