These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 27229134)

  • 21. Determinants of ligand affinity and heme reactivity in H-NOX domains.
    Weinert EE; Plate L; Whited CA; Olea C; Marletta MA
    Angew Chem Int Ed Engl; 2010; 49(4):720-3. PubMed ID: 20017169
    [No Abstract]   [Full Text] [Related]  

  • 22. DFT analysis of axial and equatorial effects on heme-CO vibrational modes: applications to CooA and H-NOX heme sensor proteins.
    Xu C; Ibrahim M; Spiro TG
    Biochemistry; 2008 Feb; 47(8):2379-87. PubMed ID: 18217776
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structural basis for ligand discrimination and response initiation in the heme-based oxygen sensor FixL.
    Rodgers KR; Lukat-Rodgers GS; Barron JA
    Biochemistry; 1996 Jul; 35(29):9539-48. PubMed ID: 8755735
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A novel kinetic trap for NO release from cytochrome c': a possible mechanism for NO release from activated soluble guanylate cyclase.
    Andrew CR; Rodgers KR; Eady RR
    J Am Chem Soc; 2003 Aug; 125(32):9548-9. PubMed ID: 12903995
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Gaseous ligand selectivity of the H-NOX sensor protein from Shewanella oneidensis and comparison to those of other bacterial H-NOXs and soluble guanylyl cyclase.
    Wu G; Liu W; Berka V; Tsai AL
    Biochimie; 2017 Sep; 140():82-92. PubMed ID: 28655588
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Resonance Raman investigation of the effects of copper binding to iron-mesoporphyrin.histidine-rich glycoprotein complexes.
    Larsen RW; Nunez DJ; Morgan WT; Muhoberac BB; Ondrias MR
    Biophys J; 1992 Apr; 61(4):1007-17. PubMed ID: 1581496
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The roles of Tyr(CD1) and Trp(G8) in Mycobacterium tuberculosis truncated hemoglobin O in ligand binding and on the heme distal site architecture.
    Ouellet H; Milani M; LaBarre M; Bolognesi M; Couture M; Guertin M
    Biochemistry; 2007 Oct; 46(41):11440-50. PubMed ID: 17887774
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Resonance raman characterization of the heme domain of soluble guanylate cyclase.
    Schelvis JP; Zhao Y; Marletta MA; Babcock GT
    Biochemistry; 1998 Nov; 37(46):16289-97. PubMed ID: 9819221
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Primary processes in heme-based sensor proteins.
    Liebl U; Lambry JC; Vos MH
    Biochim Biophys Acta; 2013 Sep; 1834(9):1684-92. PubMed ID: 23485911
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structural insights into the molecular mechanism of H-NOX activation.
    Olea C; Herzik MA; Kuriyan J; Marletta MA
    Protein Sci; 2010 Apr; 19(4):881-7. PubMed ID: 20162612
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Heme-independent Redox Sensing by the Heme-Nitric Oxide/Oxygen-binding Protein (H-NOX) from Vibrio cholerae.
    Mukhopadyay R; Sudasinghe N; Schaub T; Yukl ET
    J Biol Chem; 2016 Aug; 291(34):17547-56. PubMed ID: 27358409
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Oxygen-sensing mechanism of HemAT from Bacillus subtilis: a resonance Raman spectroscopic study.
    Ohta T; Yoshimura H; Yoshioka S; Aono S; Kitagawa T
    J Am Chem Soc; 2004 Nov; 126(46):15000-1. PubMed ID: 15547976
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Identification of conformational substates involved in nitric oxide binding to ferric and ferrous myoglobin through difference Fourier transform infrared spectroscopy (FTIR).
    Miller LM; Pedraza AJ; Chance MR
    Biochemistry; 1997 Oct; 36(40):12199-207. PubMed ID: 9315857
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Phe-46(CD4) orients the distal histidine for hydrogen bonding to bound ligands in sperm whale myoglobin.
    Lai HH; Li T; Lyons DS; Phillips GN; Olson JS; Gibson QH
    Proteins; 1995 Aug; 22(4):322-39. PubMed ID: 7479707
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dynamical characterization of the heme NO oxygen binding (HNOX) domain. Insight into soluble guanylate cyclase allosteric transition.
    Capece L; Estrin DA; Marti MA
    Biochemistry; 2008 Sep; 47(36):9416-27. PubMed ID: 18702531
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Toward modeling H-NOX domains: a DFT study of heme-NO complexes as hydrogen bond acceptors.
    Tangen E; Svadberg A; Ghosh A
    Inorg Chem; 2005 Oct; 44(22):7802-5. PubMed ID: 16241129
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Heme flattening is sufficient for signal transduction in the H-NOX family.
    Muralidharan S; Boon EM
    J Am Chem Soc; 2012 Feb; 134(4):2044-6. PubMed ID: 22257139
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Heme-nitrosyls: electronic structure implications for function in biology.
    Hunt AP; Lehnert N
    Acc Chem Res; 2015 Jul; 48(7):2117-25. PubMed ID: 26114618
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hydrophobic distal pocket affects NO-heme geminate recombination dynamics in dehaloperoxidase and H64V myoglobin.
    Franzen S; Jasaitis A; Belyea J; Brewer SH; Casey R; MacFarlane AW; Stanley RJ; Vos MH; Martin JL
    J Phys Chem B; 2006 Jul; 110(29):14483-93. PubMed ID: 16854160
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Controlling conformational flexibility of an O₂-binding H-NOX domain.
    Weinert EE; Phillips-Piro CM; Tran R; Mathies RA; Marletta MA
    Biochemistry; 2011 Aug; 50(32):6832-40. PubMed ID: 21721586
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.