These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1112 related articles for article (PubMed ID: 27229360)
1. Enhancement of chromate reduction in soils by surface modified biochar. Mandal S; Sarkar B; Bolan N; Ok YS; Naidu R J Environ Manage; 2017 Jan; 186(Pt 2):277-284. PubMed ID: 27229360 [TBL] [Abstract][Full Text] [Related]
2. Chemodynamics of chromium reduction in soils: implications to bioavailability. Choppala G; Bolan N; Seshadri B J Hazard Mater; 2013 Oct; 261():718-24. PubMed ID: 23608747 [TBL] [Abstract][Full Text] [Related]
3. The influence of biochar and black carbon on reduction and bioavailability of chromate in soils. Choppala GK; Bolan NS; Megharaj M; Chen Z; Naidu R J Environ Qual; 2012; 41(4):1175-84. PubMed ID: 22751060 [TBL] [Abstract][Full Text] [Related]
4. Concomitant reduction and immobilization of chromium in relation to its bioavailability in soils. Choppala G; Bolan N; Kunhikrishnan A; Skinner W; Seshadri B Environ Sci Pollut Res Int; 2015 Jun; 22(12):8969-78. PubMed ID: 23539209 [TBL] [Abstract][Full Text] [Related]
5. Enhanced removal of Cr(VI) by biochar with Fe as electron shuttles. Xu J; Yin Y; Tan Z; Wang B; Guo X; Li X; Liu J J Environ Sci (China); 2019 Apr; 78():109-117. PubMed ID: 30665629 [TBL] [Abstract][Full Text] [Related]
6. Differential effect of biochar upon reduction-induced mobility and bioavailability of arsenate and chromate. Choppala G; Bolan N; Kunhikrishnan A; Bush R Chemosphere; 2016 Feb; 144():374-81. PubMed ID: 26383264 [TBL] [Abstract][Full Text] [Related]
7. Characteristics and applications of biochar for remediating Cr(VI)-contaminated soils and wastewater. Xia S; Song Z; Jeyakumar P; Bolan N; Wang H Environ Geochem Health; 2020 Jun; 42(6):1543-1567. PubMed ID: 31673917 [TBL] [Abstract][Full Text] [Related]
8. Remediation of Chromium (VI) from Contaminated Agricultural Soil Using Modified Biochars. Siddika A; Islam MM; Parveen Z; Hossain MF Environ Manage; 2023 Apr; 71(4):809-820. PubMed ID: 36289071 [TBL] [Abstract][Full Text] [Related]
9. Crucial roles of soil inherent Fe-bearing minerals in enhanced Cr(VI) reduction by biochar: The electronegativity neutralization and electron transfer mediation. Ke Q; Ren J; Feng K; Zhang Z; Huang W; Xu X; Zhao L; Qiu H; Cao X Environ Pollut; 2024 Jun; 350():124014. PubMed ID: 38642792 [TBL] [Abstract][Full Text] [Related]
10. Mechanisms of Cd immobilization in contaminated calcareous soils with different textural classes treated by acid- and base-modified biochars. Boostani HR; Hosseini SM; Hardie AG Sci Rep; 2024 Oct; 14(1):24614. PubMed ID: 39427078 [TBL] [Abstract][Full Text] [Related]
11. Changes in heavy metal bioavailability and speciation from a Pb-Zn mining soil amended with biochars from co-pyrolysis of rice straw and swine manure. Meng J; Tao M; Wang L; Liu X; Xu J Sci Total Environ; 2018 Aug; 633():300-307. PubMed ID: 29574374 [TBL] [Abstract][Full Text] [Related]
12. Mechanistic evaluation of biochar potential for plant growth promotion and alleviation of chromium-induced phytotoxicity in Ficus elastica. Kumar A; Joseph S; Tsechansky L; Schreiter IJ; Schüth C; Taherysoosavi S; Mitchell DRG; Graber ER Chemosphere; 2020 Mar; 243():125332. PubMed ID: 31751928 [TBL] [Abstract][Full Text] [Related]
13. Immobilization of hexavalent chromium in contaminated soils using biochar supported nanoscale iron sulfide composite. Lyu H; Zhao H; Tang J; Gong Y; Huang Y; Wu Q; Gao B Chemosphere; 2018 Mar; 194():360-369. PubMed ID: 29223115 [TBL] [Abstract][Full Text] [Related]
14. Chemically and biologically-mediated fertilizing value of manure-derived biochar. Subedi R; Taupe N; Ikoyi I; Bertora C; Zavattaro L; Schmalenberger A; Leahy JJ; Grignani C Sci Total Environ; 2016 Apr; 550():924-933. PubMed ID: 26851878 [TBL] [Abstract][Full Text] [Related]
15. Stabilisation of nanoscale zero-valent iron with biochar for enhanced transport and in-situ remediation of hexavalent chromium in soil. Su H; Fang Z; Tsang PE; Fang J; Zhao D Environ Pollut; 2016 Jul; 214():94-100. PubMed ID: 27064615 [TBL] [Abstract][Full Text] [Related]
16. Pyrolytic production of zerovalent iron nanoparticles supported on rice husk-derived biochar: simple, in situ synthesis and use for remediation of Cr(VI)-polluted soils. Liu X; Yang L; Zhao H; Wang W Sci Total Environ; 2020 Mar; 708():134479. PubMed ID: 31796288 [TBL] [Abstract][Full Text] [Related]
17. Removal of hexavalent chromium upon interaction with biochar under acidic conditions: mechanistic insights and application. Choudhary B; Paul D; Singh A; Gupta T Environ Sci Pollut Res Int; 2017 Jul; 24(20):16786-16797. PubMed ID: 28567678 [TBL] [Abstract][Full Text] [Related]
18. The enhancement of atrazine sorption and microbial transformation in biochars amended black soils. Yang F; Zhang W; Li J; Wang S; Tao Y; Wang Y; Zhang Y Chemosphere; 2017 Dec; 189():507-516. PubMed ID: 28961536 [TBL] [Abstract][Full Text] [Related]
19. Effect of co-application of nano-zero valent iron and biochar on the total and freely dissolved polycyclic aromatic hydrocarbons removal and toxicity of contaminated soils. Oleszczuk P; Kołtowski M Chemosphere; 2017 Feb; 168():1467-1476. PubMed ID: 27916262 [TBL] [Abstract][Full Text] [Related]
20. Carbon mineralization and nutrient availability in calcareous sandy soils amended with woody waste biochar. El-Naggar AH; Usman AR; Al-Omran A; Ok YS; Ahmad M; Al-Wabel MI Chemosphere; 2015 Nov; 138():67-73. PubMed ID: 26037818 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]