These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 27229511)

  • 1. Crystal structure of CmlI, the arylamine oxygenase from the chloramphenicol biosynthetic pathway.
    Knoot CJ; Kovaleva EG; Lipscomb JD
    J Biol Inorg Chem; 2016 Sep; 21(5-6):589-603. PubMed ID: 27229511
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An unusual peroxo intermediate of the arylamine oxygenase of the chloramphenicol biosynthetic pathway.
    Makris TM; Vu VV; Meier KK; Komor AJ; Rivard BS; Münck E; Que L; Lipscomb JD
    J Am Chem Soc; 2015 Feb; 137(4):1608-17. PubMed ID: 25564306
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unprecedented (μ-1,1-Peroxo)diferric Structure for the Ambiphilic Orange Peroxo Intermediate of the Nonheme N-Oxygenase CmlI.
    Jasniewski AJ; Komor AJ; Lipscomb JD; Que L
    J Am Chem Soc; 2017 Aug; 139(30):10472-10485. PubMed ID: 28673082
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CmlI N-Oxygenase Catalyzes the Final Three Steps in Chloramphenicol Biosynthesis without Dissociation of Intermediates.
    Komor AJ; Rivard BS; Fan R; Guo Y; Que L; Lipscomb JD
    Biochemistry; 2017 Sep; 56(37):4940-4950. PubMed ID: 28823151
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diiron monooxygenases in natural product biosynthesis.
    Komor AJ; Jasniewski AJ; Que L; Lipscomb JD
    Nat Prod Rep; 2018 Jul; 35(7):646-659. PubMed ID: 29552683
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Convergent Theoretical Prediction of Reactive Oxidant Structures in Diiron Arylamine Oxygenases AurF and CmlI: Peroxo or Hydroperoxo?
    Wang C; Chen H
    J Am Chem Soc; 2017 Sep; 139(37):13038-13046. PubMed ID: 28844144
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism for Six-Electron Aryl-N-Oxygenation by the Non-Heme Diiron Enzyme CmlI.
    Komor AJ; Rivard BS; Fan R; Guo Y; Que L; Lipscomb JD
    J Am Chem Soc; 2016 Jun; 138(23):7411-21. PubMed ID: 27203126
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of Isotopes and Isotope Effects for Investigations of Diiron Oxygenase Mechanisms.
    Banerjee R; Komor AJ; Lipscomb JD
    Methods Enzymol; 2017; 596():239-290. PubMed ID: 28911774
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational Examination on the Active Site Structure of a (Peroxo)diiron(III) Intermediate in the Amine Oxygenase AurF.
    Jayapal P; Ansari A; Rajaraman G
    Inorg Chem; 2015 Dec; 54(23):11077-82. PubMed ID: 26588098
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spectroscopic and computational studies of (mu-oxo)(mu-1,2-peroxo)diiron(III) complexes of relevance to nonheme diiron oxygenase intermediates.
    Fiedler AT; Shan X; Mehn MP; Kaizer J; Torelli S; Frisch JR; Kodera M; Que L
    J Phys Chem A; 2008 Dec; 112(50):13037-44. PubMed ID: 18811130
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-resolution iron X-ray absorption spectroscopic and computational studies of non-heme diiron peroxo intermediates.
    Cutsail GE; Blaesi EJ; Pollock CJ; Bollinger JM; Krebs C; DeBeer S
    J Inorg Biochem; 2020 Feb; 203():110877. PubMed ID: 31710865
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural characterization of the peroxodiiron(III) intermediate generated during oxygen activation by the W48A/D84E variant of ribonucleotide reductase protein R2 from Escherichia coli.
    Baldwin J; Krebs C; Saleh L; Stelling M; Huynh BH; Bollinger JM; Riggs-Gelasco P
    Biochemistry; 2003 Nov; 42(45):13269-79. PubMed ID: 14609338
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Peroxide Activation for Electrophilic Reactivity by the Binuclear Non-heme Iron Enzyme AurF.
    Park K; Li N; Kwak Y; Srnec M; Bell CB; Liu LV; Wong SD; Yoda Y; Kitao S; Seto M; Hu M; Zhao J; Krebs C; Bollinger JM; Solomon EI
    J Am Chem Soc; 2017 May; 139(20):7062-7070. PubMed ID: 28457126
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystal Structure of the Peroxo-diiron(III) Intermediate of Deoxyhypusine Hydroxylase, an Oxygenase Involved in Hypusination.
    Han Z; Sakai N; Böttger LH; Klinke S; Hauber J; Trautwein AX; Hilgenfeld R
    Structure; 2015 May; 23(5):882-892. PubMed ID: 25865244
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystallographic and catalytic studies of the peroxide-shunt reaction in a diiron hydroxylase.
    Bailey LJ; Fox BG
    Biochemistry; 2009 Sep; 48(38):8932-9. PubMed ID: 19705873
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanism of Oxygenase-Pathway Reactions Catalyzed by Rubisco from Large-Scale Kohn-Sham Density Functional Calculations.
    Kannappan B; Cummins PL; Gready JE
    J Phys Chem B; 2019 Apr; 123(13):2833-2843. PubMed ID: 30845802
    [TBL] [Abstract][Full Text] [Related]  

  • 17. X-ray crystal structures of reduced rubrerythrin and its azide adduct: a structure-based mechanism for a non-heme diiron peroxidase.
    Jin S; Kurtz DM; Liu ZJ; Rose J; Wang BC
    J Am Chem Soc; 2002 Aug; 124(33):9845-55. PubMed ID: 12175244
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of the N-oxygenase AurF from Streptomyces thioletus.
    Chanco E; Choi YS; Sun N; Vu M; Zhao H
    Bioorg Med Chem; 2014 Oct; 22(20):5569-77. PubMed ID: 24973817
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of two distinct adducts in the reaction of a nonheme diiron(II) complex with O2.
    Frisch JR; Vu VV; Martinho M; Münck E; Que L
    Inorg Chem; 2009 Sep; 48(17):8325-36. PubMed ID: 19610611
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of a non-ribosomal peptide synthetase-associated diiron arylamine N-oxygenase from Pseudomonas syringae pv. phaseolicola.
    Platter E; Lawson M; Marsh C; Sazinsky MH
    Arch Biochem Biophys; 2011 Apr; 508(1):39-45. PubMed ID: 21241656
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.