These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 27229634)

  • 21. Bioinspired Ternary Artificial Nacre Nanocomposites Based on Reduced Graphene Oxide and Nanofibrillar Cellulose.
    Duan J; Gong S; Gao Y; Xie X; Jiang L; Cheng Q
    ACS Appl Mater Interfaces; 2016 Apr; 8(16):10545-50. PubMed ID: 27054460
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ultra-Tough, Strong, and Defect-Tolerant Elastomers with Self-Healing and Intelligent-Responsive Abilities.
    Zhu Y; Shen Q; Wei L; Fu X; Huang C; Zhu Y; Zhao L; Huang G; Wu J
    ACS Appl Mater Interfaces; 2019 Aug; 11(32):29373-29381. PubMed ID: 31340639
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Toughening elastomers with sacrificial bonds and watching them break.
    Ducrot E; Chen Y; Bulters M; Sijbesma RP; Creton C
    Science; 2014 Apr; 344(6180):186-9. PubMed ID: 24723609
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mechanically Robust Elastomers Enabled by a Facile Interfacial Interactions-Driven Sacrificial Network.
    Yu WW; Xu WZ; Wei YC; Liao S; Luo MC
    Macromol Rapid Commun; 2021 Dec; 42(24):e2100509. PubMed ID: 34562290
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Facile method for stiff, tough, and strong nanocomposites by direct exfoliation of multilayered graphene into native nanocellulose matrix.
    Malho JM; Laaksonen P; Walther A; Ikkala O; Linder MB
    Biomacromolecules; 2012 Apr; 13(4):1093-9. PubMed ID: 22372697
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Overcome the Conflict between Strength and Toughness in Poly(lactide) Nanocomposites through Tailoring Matrix-Filler Interface.
    Sun Y; Fan X; Lu X; He C
    Macromol Rapid Commun; 2019 Mar; 40(5):e1800047. PubMed ID: 29774615
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Graphene-Based Nanocomposites for Neural Tissue Engineering.
    Bei HP; Yang Y; Zhang Q; Tian Y; Luo X; Yang M; Zhao X
    Molecules; 2019 Feb; 24(4):. PubMed ID: 30781759
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bioinspired, Ultrastrong, Highly Biocompatible, and Bioactive Natural Polymer/Graphene Oxide Nanocomposite Films.
    Zhu WK; Cong HP; Yao HB; Mao LB; Asiri AM; Alamry KA; Marwani HM; Yu SH
    Small; 2015 Sep; 11(34):4298-302. PubMed ID: 26097134
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enhanced photocatalytic properties of titania-graphene nanocomposites: a density functional theory study.
    Geng W; Liu H; Yao X
    Phys Chem Chem Phys; 2013 Apr; 15(16):6025-33. PubMed ID: 23493794
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Enabling Design of Advanced Elastomer with Bioinspired Metal-Oxygen Coordination.
    Zhang X; Tang Z; Guo B; Zhang L
    ACS Appl Mater Interfaces; 2016 Nov; 8(47):32520-32527. PubMed ID: 27933856
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Toughening Elastomers Using a Mussel-Inspired Multiphase Design.
    Zhang X; Liu J; Zhang Z; Wu S; Tang Z; Guo B; Zhang L
    ACS Appl Mater Interfaces; 2018 Jul; 10(28):23485-23489. PubMed ID: 29975499
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nacre-inspired integrated strong and tough reduced graphene oxide-poly(acrylic acid) nanocomposites.
    Wan S; Hu H; Peng J; Li Y; Fan Y; Jiang L; Cheng Q
    Nanoscale; 2016 Mar; 8(10):5649-56. PubMed ID: 26895081
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Progress in bio-inspired sacrificial bonds in artificial polymeric materials.
    Zhou X; Guo B; Zhang L; Hu GH
    Chem Soc Rev; 2017 Oct; 46(20):6301-6329. PubMed ID: 28868549
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Graphene-Based Bionic Composites with Multifunctional and Repairing Properties.
    Valentini L; Bittolo Bon S; Signetti S; Pugno NM
    ACS Appl Mater Interfaces; 2016 Mar; 8(12):7607-12. PubMed ID: 26971362
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Preparation of bacterial cellulose/graphene nanosheets composite films with enhanced mechanical performances.
    Shao W; Wang S; Liu H; Wu J; Zhang R; Min H; Huang M
    Carbohydr Polym; 2016 Mar; 138():166-71. PubMed ID: 26794749
    [TBL] [Abstract][Full Text] [Related]  

  • 36. InP/ZnS-graphene oxide and reduced graphene oxide nanocomposites as fascinating materials for potential optoelectronic applications.
    Samal M; Mohapatra P; Subbiah R; Lee CL; Anass B; Kim JA; Kim T; Yi DK
    Nanoscale; 2013 Oct; 5(20):9793-805. PubMed ID: 23963403
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Graphene-and-Copper Artificial Nacre Fabricated by a Preform Impregnation Process: Bioinspired Strategy for Strengthening-Toughening of Metal Matrix Composite.
    Xiong DB; Cao M; Guo Q; Tan Z; Fan G; Li Z; Zhang D
    ACS Nano; 2015 Jul; 9(7):6934-43. PubMed ID: 26083407
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Graphene scavenges free radicals to synergistically enhance structural properties in a gamma-irradiated polyethylene composite through enhanced interfacial interactions.
    Kolanthai E; Bose S; Bhagyashree KS; Bhat SV; Asokan K; Kanjilal D; Chatterjee K
    Phys Chem Chem Phys; 2015 Sep; 17(35):22900-10. PubMed ID: 26266702
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of the electric field on the properties of ZnO-graphene composites: a density functional theory study.
    Geng W; Zhao X; Zan W; Liu H; Yao X
    Phys Chem Chem Phys; 2014 Feb; 16(8):3542-8. PubMed ID: 24285715
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Flaw tolerant bulk and surface nanostructures of biological systems.
    Gao H; Ji B; Buehler MJ; Yao H
    Mech Chem Biosyst; 2004 Mar; 1(1):37-52. PubMed ID: 16783945
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.