These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
206 related articles for article (PubMed ID: 27229732)
1. Overexpression of wheat gene TaMOR improves root system architecture and grain yield in Oryza sativa. Li B; Liu D; Li Q; Mao X; Li A; Wang J; Chang X; Jing R J Exp Bot; 2016 Jul; 67(14):4155-67. PubMed ID: 27229732 [TBL] [Abstract][Full Text] [Related]
2. TaMOR is essential for root initiation and improvement of root system architecture in wheat. Li C; Wang J; Li L; Li J; Zhuang M; Li B; Li Q; Huang J; Du Y; Wang J; Fan Z; Mao X; Jing R Plant Biotechnol J; 2022 May; 20(5):862-875. PubMed ID: 34890129 [TBL] [Abstract][Full Text] [Related]
3. Constitutive expression of CaPLA1 conferred enhanced growth and grain yield in transgenic rice plants. Park KY; Kim EY; Seo YS; Kim WT Plant Mol Biol; 2016 Mar; 90(4-5):517-32. PubMed ID: 26803502 [TBL] [Abstract][Full Text] [Related]
4. Enhanced glutathione content improves lateral root development and grain yield in rice plants. Park SI; Kim JJ; Kim HS; Kim YS; Yoon HS Plant Mol Biol; 2021 Mar; 105(4-5):365-383. PubMed ID: 33206358 [TBL] [Abstract][Full Text] [Related]
5. Overexpression of RCc3 improves root system architecture and enhances salt tolerance in rice. Li X; Chen R; Chu Y; Huang J; Jin L; Wang G; Huang J Plant Physiol Biochem; 2018 Sep; 130():566-576. PubMed ID: 30103148 [TBL] [Abstract][Full Text] [Related]
6. OsNAC5 overexpression enlarges root diameter in rice plants leading to enhanced drought tolerance and increased grain yield in the field. Jeong JS; Kim YS; Redillas MC; Jang G; Jung H; Bang SW; Choi YD; Ha SH; Reuzeau C; Kim JK Plant Biotechnol J; 2013 Jan; 11(1):101-14. PubMed ID: 23094910 [TBL] [Abstract][Full Text] [Related]
7. Mutations in the F-box gene LARGER PANICLE improve the panicle architecture and enhance the grain yield in rice. Li M; Tang D; Wang K; Wu X; Lu L; Yu H; Gu M; Yan C; Cheng Z Plant Biotechnol J; 2011 Dec; 9(9):1002-13. PubMed ID: 21447055 [TBL] [Abstract][Full Text] [Related]
8. The auxin responsive AP2/ERF transcription factor CROWN ROOTLESS5 is involved in crown root initiation in rice through the induction of OsRR1, a type-A response regulator of cytokinin signaling. Kitomi Y; Ito H; Hobo T; Aya K; Kitano H; Inukai Y Plant J; 2011 Aug; 67(3):472-84. PubMed ID: 21481033 [TBL] [Abstract][Full Text] [Related]
9. TaWRKY51 promotes lateral root formation through negative regulation of ethylene biosynthesis in wheat (Triticum aestivum L.). Hu Z; Wang R; Zheng M; Liu X; Meng F; Wu H; Yao Y; Xin M; Peng H; Ni Z; Sun Q Plant J; 2018 Oct; 96(2):372-388. PubMed ID: 30044519 [TBL] [Abstract][Full Text] [Related]
10. The wheat basic helix-loop-helix gene TabHLH123 positively modulates the formation of crown roots and is associated with plant height and 1000-grain weight under various conditions. Wang J; Li C; Mao X; Wang J; Li L; Li J; Fan Z; Zhu Z; He L; Jing R J Exp Bot; 2023 Apr; 74(8):2542-2555. PubMed ID: 36749713 [TBL] [Abstract][Full Text] [Related]
12. OsMYB2P-1, an R2R3 MYB transcription factor, is involved in the regulation of phosphate-starvation responses and root architecture in rice. Dai X; Wang Y; Yang A; Zhang WH Plant Physiol; 2012 May; 159(1):169-83. PubMed ID: 22395576 [TBL] [Abstract][Full Text] [Related]
13. OsPIN5b modulates rice (Oryza sativa) plant architecture and yield by changing auxin homeostasis, transport and distribution. Lu G; Coneva V; Casaretto JA; Ying S; Mahmood K; Liu F; Nambara E; Bi YM; Rothstein SJ Plant J; 2015 Sep; 83(5):913-25. PubMed ID: 26213119 [TBL] [Abstract][Full Text] [Related]
14. Distinctive expression patterns and roles of the miRNA393/TIR1 homolog module in regulating flag leaf inclination and primary and crown root growth in rice (Oryza sativa). Bian H; Xie Y; Guo F; Han N; Ma S; Zeng Z; Wang J; Yang Y; Zhu M New Phytol; 2012 Oct; 196(1):149-161. PubMed ID: 22846038 [TBL] [Abstract][Full Text] [Related]
15. The Auxin Biosynthetic Shao A; Ma W; Zhao X; Hu M; He X; Teng W; Li H; Tong Y Plant Physiol; 2017 Aug; 174(4):2274-2288. PubMed ID: 28626005 [TBL] [Abstract][Full Text] [Related]
16. Overexpression of RAN1 in rice and Arabidopsis alters primordial meristem, mitotic progress, and sensitivity to auxin. Wang X; Xu Y; Han Y; Bao S; Du J; Yuan M; Xu Z; Chong K Plant Physiol; 2006 Jan; 140(1):91-101. PubMed ID: 16361516 [TBL] [Abstract][Full Text] [Related]
17. CLUSTERED PRIMARY BRANCH 1, a new allele of DWARF11, controls panicle architecture and seed size in rice. Wu Y; Fu Y; Zhao S; Gu P; Zhu Z; Sun C; Tan L Plant Biotechnol J; 2016 Jan; 14(1):377-86. PubMed ID: 25923523 [TBL] [Abstract][Full Text] [Related]
18. TaSPL13 regulates inflorescence architecture and development in transgenic wheat (Triticum aestivum L.). Li L; Shi F; Wang Y; Yu X; Zhi J; Guan Y; Zhao H; Chang J; Chen M; Yang G; Wang Y; He G Plant Sci; 2020 Jul; 296():110516. PubMed ID: 32539997 [TBL] [Abstract][Full Text] [Related]
19. Identification of CROWN ROOTLESS1-regulated genes in rice reveals specific and conserved elements of postembryonic root formation. Coudert Y; Le VAT; Adam H; Bès M; Vignols F; Jouannic S; Guiderdoni E; Gantet P New Phytol; 2015 Apr; 206(1):243-254. PubMed ID: 25442012 [TBL] [Abstract][Full Text] [Related]
20. OsWRKY74, a WRKY transcription factor, modulates tolerance to phosphate starvation in rice. Dai X; Wang Y; Zhang WH J Exp Bot; 2016 Feb; 67(3):947-60. PubMed ID: 26663563 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]