BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 27229773)

  • 41. Production of recombinant adeno-associated vectors using two bioreactor configurations at different scales.
    Negrete A; Kotin RM
    J Virol Methods; 2007 Nov; 145(2):155-61. PubMed ID: 17606302
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Muscle as a target for supplementary factor IX gene transfer.
    Hoffman BE; Dobrzynski E; Wang L; Hirao L; Mingozzi F; Cao O; Herzog RW
    Hum Gene Ther; 2007 Jul; 18(7):603-13. PubMed ID: 17594244
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Production of Adeno-Associated Virus Vectors in Cell Stacks for Preclinical Studies in Large Animal Models.
    Rghei AD; Stevens BAY; Thomas SP; Yates JGE; McLeod BM; Karimi K; Susta L; Bridle BW; Wootton SK
    J Vis Exp; 2021 Jun; (172):. PubMed ID: 34279499
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Pseudorabies virus production using a serum-free medium in fixed-bed bioreactors with low cell inoculum density.
    Nie J; Sun Y; Peng F; Han F; Yang Y; Liu X; Liu C; Li Y; Bai Z
    Biotechnol Lett; 2020 Dec; 42(12):2551-2560. PubMed ID: 32816175
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Toward exascale production of recombinant adeno-associated virus for gene transfer applications.
    Cecchini S; Negrete A; Kotin RM
    Gene Ther; 2008 Jun; 15(11):823-30. PubMed ID: 18401433
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Liver transduction with recombinant adeno-associated virus is primarily restricted by capsid serotype not vector genotype.
    Grimm D; Pandey K; Nakai H; Storm TA; Kay MA
    J Virol; 2006 Jan; 80(1):426-39. PubMed ID: 16352567
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Production of Recombinant Rabies Virus Glycoprotein by Insect Cells in a Single-Use Fixed-Bed Bioreactor.
    Ventini-Monteiro DC; Astray RM; Pereira CA
    Methods Mol Biol; 2018; 1674():87-94. PubMed ID: 28921430
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A novel adenovirus-adeno-associated virus hybrid vector that displays efficient rescue and delivery of the AAV genome.
    Fisher KJ; Kelley WM; Burda JF; Wilson JM
    Hum Gene Ther; 1996 Nov; 7(17):2079-87. PubMed ID: 8934222
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Comparison of different bioreactor systems for the production of high titer retroviral vectors.
    Merten OW; Cruz PE; Rochette C; Geny-Fiamma C; Bouquet C; Gonçalves D; Danos O; Carrondo MJ
    Biotechnol Prog; 2001; 17(2):326-35. PubMed ID: 11312711
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Exploring the design space of AAV transient-transfection in suspension cell lines.
    Meade O; Clark J; McCutchen M; Kerwin J
    Methods Enzymol; 2021; 660():341-360. PubMed ID: 34742397
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Production of adeno-associated viral vector serotype 6 by triple transfection of suspension HEK293 cells at higher cell densities.
    Moço PD; Xu X; Silva CAT; Kamen AA
    Biotechnol J; 2023 Sep; 18(9):e2300051. PubMed ID: 37337925
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Bioreactor production of recombinant herpes simplex virus vectors.
    Knop DR; Harrell H
    Biotechnol Prog; 2007; 23(3):715-21. PubMed ID: 17461549
    [TBL] [Abstract][Full Text] [Related]  

  • 53. AAV as a viral vector for human gene therapy. Generation of recombinant virus.
    Rolling F; Samulski RJ
    Mol Biotechnol; 1995 Feb; 3(1):9-15. PubMed ID: 7606507
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Gene therapy for hemophilia B with liver-specific element mediated by Rep-RBE site-specific integration system.
    Xu Z; Ye J; Zhang A; Xie L; Shen Q; Xue J; Chen J
    J Cardiovasc Pharmacol; 2015 Feb; 65(2):153-9. PubMed ID: 25295466
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Insertional mutagenesis of the adeno-associated virus type 2 (AAV2) capsid gene and generation of AAV2 vectors targeted to alternative cell-surface receptors.
    Shi W; Arnold GS; Bartlett JS
    Hum Gene Ther; 2001 Sep; 12(14):1697-711. PubMed ID: 11560765
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Optimized human factor IX expression cassettes for hepatic-directed gene therapy of hemophilia B.
    Zhang R; Wang Q; Zhang L; Chen S
    Front Med; 2015 Mar; 9(1):90-9. PubMed ID: 25663062
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Insect cells as a factory to produce adeno-associated virus type 2 vectors.
    Urabe M; Ding C; Kotin RM
    Hum Gene Ther; 2002 Nov; 13(16):1935-43. PubMed ID: 12427305
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Employing a gain-of-function factor IX variant R338L to advance the efficacy and safety of hemophilia B human gene therapy: preclinical evaluation supporting an ongoing adeno-associated virus clinical trial.
    Monahan PE; Sun J; Gui T; Hu G; Hannah WB; Wichlan DG; Wu Z; Grieger JC; Li C; Suwanmanee T; Stafford DW; Booth CJ; Samulski JJ; Kafri T; McPhee SW; Samulski RJ
    Hum Gene Ther; 2015 Feb; 26(2):69-81. PubMed ID: 25419787
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Efficient expression of the vascular endothelial growth factor gene in vitro and in vivo, using an adeno-associated virus vector.
    Byun J; Heard JM; Huh JE; Park SJ; Jung EA; Jeong JO; Gwon HC; Kim DK
    J Mol Cell Cardiol; 2001 Feb; 33(2):295-305. PubMed ID: 11162134
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Transduction of striatum and cortex tissues by adeno-associated viral vectors produced by herpes simplex virus- and baculovirus-based methods.
    Zhang HS; Kim E; Lee S; Ahn IS; Jang JH
    J Virol Methods; 2012 Jan; 179(1):276-80. PubMed ID: 22015677
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.