BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

464 related articles for article (PubMed ID: 27229931)

  • 1. Dietary breadth is positively correlated with venom complexity in cone snails.
    Phuong MA; Mahardika GN; Alfaro ME
    BMC Genomics; 2016 May; 17():401. PubMed ID: 27229931
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of Predator-Prey Interactions on Predator Traits: Differentiation of Diets and Venoms of a Marine Snail.
    Weese DA; Duda TF
    Toxins (Basel); 2019 May; 11(5):. PubMed ID: 31130611
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Targeted Sequencing of Venom Genes from Cone Snail Genomes Improves Understanding of Conotoxin Molecular Evolution.
    Phuong MA; Mahardika GN
    Mol Biol Evol; 2018 May; 35(5):1210-1224. PubMed ID: 29514313
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diversity of Conopeptides and Conoenzymes from the Venom Duct of the Marine Cone Snail
    Rajaian Pushpabai R; Wilson Alphonse CR; Mani R; Arun Apte D; Franklin JB
    Mar Drugs; 2021 Apr; 19(4):. PubMed ID: 33916793
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-throughput identification of novel conotoxins from the Chinese tubular cone snail (Conus betulinus) by multi-transcriptome sequencing.
    Peng C; Yao G; Gao BM; Fan CX; Bian C; Wang J; Cao Y; Wen B; Zhu Y; Ruan Z; Zhao X; You X; Bai J; Li J; Lin Z; Zou S; Zhang X; Qiu Y; Chen J; Coon SL; Yang J; Chen JS; Shi Q
    Gigascience; 2016; 5():17. PubMed ID: 27087938
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diversity of Conopeptides and Their Precursor Genes of
    Li X; Chen W; Zhangsun D; Luo S
    Mar Drugs; 2020 Sep; 18(9):. PubMed ID: 32937857
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-Throughput Identification and Analysis of Novel Conotoxins from Three Vermivorous Cone Snails by Transcriptome Sequencing.
    Yao G; Peng C; Zhu Y; Fan C; Jiang H; Chen J; Cao Y; Shi Q
    Mar Drugs; 2019 Mar; 17(3):. PubMed ID: 30917600
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of defensive ecological interactions in the evolution of conotoxins.
    Prashanth JR; Dutertre S; Jin AH; Lavergne V; Hamilton B; Cardoso FC; Griffin J; Venter DJ; Alewood PF; Lewis RJ
    Mol Ecol; 2016 Jan; 25(2):598-615. PubMed ID: 26614983
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High conopeptide diversity in Conus tribblei revealed through analysis of venom duct transcriptome using two high-throughput sequencing platforms.
    Barghi N; Concepcion GP; Olivera BM; Lluisma AO
    Mar Biotechnol (NY); 2015 Feb; 17(1):81-98. PubMed ID: 25117477
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Venom Diversity and Evolution in the Most Divergent Cone Snail Genus
    Fassio G; Modica MV; Mary L; Zaharias P; Fedosov AE; Gorson J; Kantor YI; Holford M; Puillandre N
    Toxins (Basel); 2019 Oct; 11(11):. PubMed ID: 31661832
    [No Abstract]   [Full Text] [Related]  

  • 11. Comparison of the Venom Peptides and Their Expression in Closely Related Conus Species: Insights into Adaptive Post-speciation Evolution of Conus Exogenomes.
    Barghi N; Concepcion GP; Olivera BM; Lluisma AO
    Genome Biol Evol; 2015 Jun; 7(6):1797-814. PubMed ID: 26047846
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Collaborative Expression: Transcriptomics of Conus virgo Suggests Contribution of Multiple Secretory Glands to Venom Production.
    Fedosov A; Tucci CF; Kantor Y; Farhat S; Puillandre N
    J Mol Evol; 2023 Dec; 91(6):837-853. PubMed ID: 37962577
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative Venomics Reveals the Complex Prey Capture Strategy of the Piscivorous Cone Snail Conus catus.
    Himaya SW; Jin AH; Dutertre S; Giacomotto J; Mohialdeen H; Vetter I; Alewood PF; Lewis RJ
    J Proteome Res; 2015 Oct; 14(10):4372-81. PubMed ID: 26322961
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-resolution picture of a venom gland transcriptome: case study with the marine snail Conus consors.
    Terrat Y; Biass D; Dutertre S; Favreau P; Remm M; Stöcklin R; Piquemal D; Ducancel F
    Toxicon; 2012 Jan; 59(1):34-46. PubMed ID: 22079299
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Insights into the origins of fish hunting in venomous cone snails from studies of Conus tessulatus.
    Aman JW; Imperial JS; Ueberheide B; Zhang MM; Aguilar M; Taylor D; Watkins M; Yoshikami D; Showers-Corneli P; Safavi-Hemami H; Biggs J; Teichert RW; Olivera BM
    Proc Natl Acad Sci U S A; 2015 Apr; 112(16):5087-92. PubMed ID: 25848010
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep venomics reveals the mechanism for expanded peptide diversity in cone snail venom.
    Dutertre S; Jin AH; Kaas Q; Jones A; Alewood PF; Lewis RJ
    Mol Cell Proteomics; 2013 Feb; 12(2):312-29. PubMed ID: 23152539
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Age-related association of venom gene expression and diet of predatory gastropods.
    Chang D; Duda TF
    BMC Evol Biol; 2016 Jan; 16():27. PubMed ID: 26818019
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative Venomics of
    Himaya SWA; Arkhipov A; Yum WY; Lewis RJ
    Mar Drugs; 2022 Mar; 20(3):. PubMed ID: 35323508
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Systematic interrogation of the Conus marmoreus venom duct transcriptome with ConoSorter reveals 158 novel conotoxins and 13 new gene superfamilies.
    Lavergne V; Dutertre S; Jin AH; Lewis RJ; Taft RJ; Alewood PF
    BMC Genomics; 2013 Oct; 14():708. PubMed ID: 24131469
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Venom duct origins of prey capture and defensive conotoxins in piscivorous Conus striatus.
    Himaya SWA; Jin AH; Hamilton B; Rai SK; Alewood P; Lewis RJ
    Sci Rep; 2021 Jun; 11(1):13282. PubMed ID: 34168165
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.