BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 27230236)

  • 41. Reduction of ethanol yield and improvement of glycerol formation by adaptive evolution of the wine yeast Saccharomyces cerevisiae under hyperosmotic conditions.
    Tilloy V; Ortiz-Julien A; Dequin S
    Appl Environ Microbiol; 2014 Apr; 80(8):2623-32. PubMed ID: 24532067
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Engineering high-level production of fatty alcohols by Saccharomyces cerevisiae from lignocellulosic feedstocks.
    d'Espaux L; Ghosh A; Runguphan W; Wehrs M; Xu F; Konzock O; Dev I; Nhan M; Gin J; Reider Apel A; Petzold CJ; Singh S; Simmons BA; Mukhopadhyay A; García Martín H; Keasling JD
    Metab Eng; 2017 Jul; 42():115-125. PubMed ID: 28606738
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A modular metabolic engineering approach for the production of 1,2-propanediol from glycerol by Saccharomyces cerevisiae.
    Islam ZU; Klein M; Aßkamp MR; Ødum ASR; Nevoigt E
    Metab Eng; 2017 Nov; 44():223-235. PubMed ID: 29024819
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Metabolomic and (13)C-metabolic flux analysis of a xylose-consuming Saccharomyces cerevisiae strain expressing xylose isomerase.
    Wasylenko TM; Stephanopoulos G
    Biotechnol Bioeng; 2015 Mar; 112(3):470-83. PubMed ID: 25311863
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Metabolic engineering of muconic acid production in Saccharomyces cerevisiae.
    Curran KA; Leavitt JM; Karim AS; Alper HS
    Metab Eng; 2013 Jan; 15():55-66. PubMed ID: 23164574
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Promotion of compound K production in Saccharomyces cerevisiae by glycerol.
    Nan W; Zhao F; Zhang C; Ju H; Lu W
    Microb Cell Fact; 2020 Feb; 19(1):41. PubMed ID: 32075645
    [TBL] [Abstract][Full Text] [Related]  

  • 47. In silico aided metabolic engineering of Saccharomyces cerevisiae for improved bioethanol production.
    Bro C; Regenberg B; Förster J; Nielsen J
    Metab Eng; 2006 Mar; 8(2):102-11. PubMed ID: 16289778
    [TBL] [Abstract][Full Text] [Related]  

  • 48.
    Liu Y; Liu H; Hu H; Ng KR; Yang R; Lyu X
    J Agric Food Chem; 2022 Jun; 70(24):7490-7499. PubMed ID: 35649155
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Comparative study on a series of recombinant flocculent Saccharomyces cerevisiae strains with different expression levels of xylose reductase and xylulokinase.
    Matsushika A; Sawayama S
    Enzyme Microb Technol; 2011 May; 48(6-7):466-71. PubMed ID: 22113018
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Quantitative evaluation of yeast's requirement for glycerol formation in very high ethanol performance fed-batch process.
    Pagliardini J; Hubmann G; Bideaux C; Alfenore S; Nevoigt E; Guillouet SE
    Microb Cell Fact; 2010 May; 9():36. PubMed ID: 20492645
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Metabolic Engineering of
    Li T; Liu GS; Zhou W; Jiang M; Ren YH; Tao XY; Liu M; Zhao M; Wang FQ; Gao B; Wei DZ
    J Agric Food Chem; 2020 Feb; 68(7):2132-2138. PubMed ID: 31989819
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Anaerobic and aerobic batch cultivations of Saccharomyces cerevisiae mutants impaired in glycerol synthesis.
    Nissen TL; Hamann CW; Kielland-Brandt MC; Nielsen J; Villadsen J
    Yeast; 2000 Mar; 16(5):463-74. PubMed ID: 10705374
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Systematic engineering of Saccharomyces cerevisiae for D-lactic acid production with near theoretical yield.
    Watcharawipas A; Sae-Tang K; Sansatchanon K; Sudying P; Boonchoo K; Tanapongpipat S; Kocharin K; Runguphan W
    FEMS Yeast Res; 2021 Apr; 21(4):. PubMed ID: 33856451
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Characterization of the role of para-aminobenzoic acid biosynthesis in folate production by Lactococcus lactis.
    Wegkamp A; van Oorschot W; de Vos WM; Smid EJ
    Appl Environ Microbiol; 2007 Apr; 73(8):2673-81. PubMed ID: 17308179
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A metabolic and genomic study of engineered Saccharomyces cerevisiae strains for high glycerol production.
    Cordier H; Mendes F; Vasconcelos I; François JM
    Metab Eng; 2007 Jul; 9(4):364-78. PubMed ID: 17500021
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Deletion of glycerol-3-phosphate dehydrogenase genes improved 2,3-butanediol production by reducing glycerol production in pyruvate decarboxylase-deficient Saccharomyces cerevisiae.
    Kim JW; Lee YG; Kim SJ; Jin YS; Seo JH
    J Biotechnol; 2019 Oct; 304():31-37. PubMed ID: 31421146
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Modulation of the glycerol and ethanol syntheses in the yeast Saccharomyces kudriavzevii differs from that exhibited by Saccharomyces cerevisiae and their hybrid.
    Arroyo-López FN; Pérez-Torrado R; Querol A; Barrio E
    Food Microbiol; 2010 Aug; 27(5):628-37. PubMed ID: 20510781
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Novel homologous lactate transporter improves L-lactic acid production from glycerol in recombinant strains of Pichia pastoris.
    de Lima PB; Mulder KC; Melo NT; Carvalho LS; Menino GS; Mulinari E; de Castro VH; Dos Reis TF; Goldman GH; Magalhães BS; Parachin NS
    Microb Cell Fact; 2016 Sep; 15(1):158. PubMed ID: 27634467
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Efficient production of 2,3-butanediol in Saccharomyces cerevisiae by eliminating ethanol and glycerol production and redox rebalancing.
    Kim S; Hahn JS
    Metab Eng; 2015 Sep; 31():94-101. PubMed ID: 26226562
    [TBL] [Abstract][Full Text] [Related]  

  • 60. De novo production of the flavonoid naringenin in engineered Saccharomyces cerevisiae.
    Koopman F; Beekwilder J; Crimi B; van Houwelingen A; Hall RD; Bosch D; van Maris AJ; Pronk JT; Daran JM
    Microb Cell Fact; 2012 Dec; 11():155. PubMed ID: 23216753
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.