These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
237 related articles for article (PubMed ID: 27230504)
21. Curcumin-guided nanotherapy: a lipid-based nanomedicine for targeted drug delivery in breast cancer therapy. Lin M; Teng L; Wang Y; Zhang J; Sun X Drug Deliv; 2016 May; 23(4):1420-5. PubMed ID: 26203688 [TBL] [Abstract][Full Text] [Related]
22. Hansen solubility parameters (HSP) for prescreening formulation of solid lipid nanoparticles (SLN): in vitro testing of curcumin-loaded SLN in MCF-7 and BT-474 cell lines. Doktorovova S; Souto EB; Silva AM Pharm Dev Technol; 2018 Jan; 23(1):96-105. PubMed ID: 28949267 [TBL] [Abstract][Full Text] [Related]
24. A comparative study on the efficiency of chitosan-N-acetylcysteine, chitosan oligosaccharides or carboxymethyl chitosan surface modified nanostructured lipid carrier for ophthalmic delivery of curcumin. Li J; Liu D; Tan G; Zhao Z; Yang X; Pan W Carbohydr Polym; 2016 Aug; 146():435-44. PubMed ID: 27112894 [TBL] [Abstract][Full Text] [Related]
25. Oral In-Situ Nanoplatform with Balanced Hydrophobic-Hydrophilic Property for Transport Across Gastrointestinal Mucosa. Attar ES; Jayakumar S; Devarajan PV AAPS PharmSciTech; 2024 May; 25(5):113. PubMed ID: 38750336 [TBL] [Abstract][Full Text] [Related]
26. Critical parameters dictating efficiency of membrane-mediated drug transfer using nanoparticles. Abbasi S; Kajimoto K; Harashima H Int J Pharm; 2018 Dec; 553(1-2):398-407. PubMed ID: 30393168 [TBL] [Abstract][Full Text] [Related]
27. Toward a Platform for the Treatment of Burns: An Assessment of Nanoemulsions vs. Nanostructured Lipid Carriers Loaded with Curcumin. Araújo GMS; Loureiro AIS; Rodrigues JL; Barros PAB; Halicki PCB; Ramos DF; Marinho MAG; Vaiss DP; Vaz GR; Yurgel VC; Bidone J; Muccillo-Baisch AL; Hort MA; Paulo AMC; Dora CL Biomedicines; 2023 Dec; 11(12):. PubMed ID: 38137569 [TBL] [Abstract][Full Text] [Related]
28. Facile Fabrication of Oxidation-Responsive Polymeric Nanoparticles for Effective Anticancer Drug Delivery. Huang Y; Chen Q; Ma P; Song H; Ma X; Ma Y; Zhou X; Gou S; Xu Z; Chen J; Xiao B Mol Pharm; 2019 Jan; 16(1):49-59. PubMed ID: 30485109 [TBL] [Abstract][Full Text] [Related]
29. Development of Chitosan-Based pH-Sensitive Polymeric Micelles Containing Curcumin for Colon-Targeted Drug Delivery. Woraphatphadung T; Sajomsang W; Rojanarata T; Ngawhirunpat T; Tonglairoum P; Opanasopit P AAPS PharmSciTech; 2018 Apr; 19(3):991-1000. PubMed ID: 29110292 [TBL] [Abstract][Full Text] [Related]
30. Intracellular Uptake of Curcumin-Loaded Solid Lipid Nanoparticles Exhibit Anti-Inflammatory Activities Superior to Those of Curcumin Through the NF-κB Signaling Pathway. Wang J; Zhu R; Sun D; Sun X; Geng Z; Liu H; Wang SL J Biomed Nanotechnol; 2015 Mar; 11(3):403-15. PubMed ID: 26307824 [TBL] [Abstract][Full Text] [Related]
31. Construction and comparison of different nanocarriers for co-delivery of cisplatin and curcumin: A synergistic combination nanotherapy for cervical cancer. Li C; Ge X; Wang L Biomed Pharmacother; 2017 Feb; 86():628-636. PubMed ID: 28027539 [TBL] [Abstract][Full Text] [Related]
32. Curcumin nanoemulsion for transdermal application: formulation and evaluation. Rachmawati H; Budiputra DK; Mauludin R Drug Dev Ind Pharm; 2015 Apr; 41(4):560-6. PubMed ID: 24502271 [TBL] [Abstract][Full Text] [Related]
33. Curcumin-polymeric nanoparticles against colon-26 tumor-bearing mice: cytotoxicity, pharmacokinetic and anticancer efficacy studies. Chaurasia S; Chaubey P; Patel RR; Kumar N; Mishra B Drug Dev Ind Pharm; 2016; 42(5):694-700. PubMed ID: 26165247 [TBL] [Abstract][Full Text] [Related]
34. Effects of lecithin-based nanoemulsions on skin: Short-time cytotoxicity MTT and BrdU studies, skin penetration of surfactants and additives and the delivery of curcumin. Vater C; Hlawaty V; Werdenits P; Cichoń MA; Klang V; Elbe-Bürger A; Wirth M; Valenta C Int J Pharm; 2020 Apr; 580():119209. PubMed ID: 32165223 [TBL] [Abstract][Full Text] [Related]
35. Preparation of curcumin-loaded PCL-PEG-PCL triblock copolymeric nanoparticles by a microchannel technology. Guo F; Guo D; Zhang W; Yan Q; Yang Y; Hong W; Yang G Eur J Pharm Sci; 2017 Mar; 99():328-336. PubMed ID: 28062259 [TBL] [Abstract][Full Text] [Related]
36. Radiosensitizing effect of curcumin-loaded lipid nanoparticles in breast cancer cells. Minafra L; Porcino N; Bravatà V; Gaglio D; Bonanomi M; Amore E; Cammarata FP; Russo G; Militello C; Savoca G; Baglio M; Abbate B; Iacoviello G; Evangelista G; Gilardi MC; Bondì ML; Forte GI Sci Rep; 2019 Jul; 9(1):11134. PubMed ID: 31366901 [TBL] [Abstract][Full Text] [Related]
38. Formulation optimization, characterization, and evaluation of in vitro cytotoxic potential of curcumin loaded solid lipid nanoparticles for improved anticancer activity. Rompicharla SVK; Bhatt H; Shah A; Komanduri N; Vijayasarathy D; Ghosh B; Biswas S Chem Phys Lipids; 2017 Nov; 208():10-18. PubMed ID: 28842128 [TBL] [Abstract][Full Text] [Related]
39. Potential advantages of a novel chitosan-N-acetylcysteine surface modified nanostructured lipid carrier on the performance of ophthalmic delivery of curcumin. Liu D; Li J; Pan H; He F; Liu Z; Wu Q; Bai C; Yu S; Yang X Sci Rep; 2016 Jun; 6():28796. PubMed ID: 27350323 [TBL] [Abstract][Full Text] [Related]
40. Polyelectrolyte Complex Nanoparticles from Chitosan and Acylated Rapeseed Cruciferin Protein for Curcumin Delivery. Wang F; Yang Y; Ju X; Udenigwe CC; He R J Agric Food Chem; 2018 Mar; 66(11):2685-2693. PubMed ID: 29451796 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]