These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 27230635)

  • 1. Removal of fly-ash and dust particulate matters from syngas produced by gasification of coal by using a multi-stage dual-flow sieve plate wet scrubber.
    Kurella S; Meikap BC
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2016 Aug; 51(10):870-6. PubMed ID: 27230635
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fly ash scrubbing in a novel dual flow scrubber.
    Bandyopadhyay A; Biswas MN
    Waste Manag; 2007; 27(12):1845-59. PubMed ID: 17175154
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Removal of H
    Kurella S; Bhukya PK; Meikap BC
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2017 May; 52(6):515-523. PubMed ID: 28276891
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synergistic removal of dust using the wet flue gas desulfurization systems.
    Wu Q; Gu M; Du Y; Zeng H
    R Soc Open Sci; 2019 Jul; 6(7):181696. PubMed ID: 31417692
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The secondary release of mercury in coal fly ash-based flue-gas mercury removal technology.
    He J; Duan C; Lei M; Zhu X
    Environ Technol; 2016; 37(1):28-38. PubMed ID: 26121324
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluating the performance of a turbulent wet scrubber for scrubbing particulate matter.
    Lee BK; Mohan BR; Byeon SH; Lim KS; Hong EP
    J Air Waste Manag Assoc; 2013 May; 63(5):499-506. PubMed ID: 23786141
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimum reaction ratio of coal fly ash to blast furnace cement for effective removal of hydrogen sulfide.
    Asaoka S; Okamura H; Kim K; Hatanaka Y; Nakamoto K; Hino K; Oikawa T; Hayakawa S; Okuda T
    Chemosphere; 2017 Feb; 168():384-389. PubMed ID: 27810538
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Experimental study on emission characteristics of PM10 in coal-fired boilers].
    Guo X; Chen D; Zheng CG; Sui JC; Xu MH
    Huan Jing Ke Xue; 2008 Mar; 29(3):587-92. PubMed ID: 18649512
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distribution and emission characteristics of filterable and condensable particulate matter before and after a low-low temperature electrostatic precipitator.
    Li X; Zhou C; Li J; Lu S; Yan J
    Environ Sci Pollut Res Int; 2019 May; 26(13):12798-12806. PubMed ID: 30887449
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative studies of carbon capture onto coal fly ash zeolites Na-X and Na-Ca-X.
    Boycheva S; Zgureva D; Lazarova H; Popova M
    Chemosphere; 2021 May; 271():129505. PubMed ID: 33450419
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sex differences in the association between exposure to indoor particulate matter and cognitive control among children (age 6-14 years) living near coal-fired power plants.
    Sears CG; Sears L; Zierold KM
    Neurotoxicol Teratol; 2020; 78():106855. PubMed ID: 31917336
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Hazard evaluation modeling of particulate matters emitted by coal-fired boilers and case analysis].
    Shi YT; Du Q; Gao JM; Bian X; Wang ZP; Dong HM; Han Q; Cao Y
    Huan Jing Ke Xue; 2014 Feb; 35(2):470-4. PubMed ID: 24812935
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spray scrubbing of particulate-laden SO(2) using a critical flow atomizer.
    Bandyopadhyay A; Biswas MN
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2008 Aug; 43(10):1115-25. PubMed ID: 18584427
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of NO
    Zhang P; Yao Y; Li Y; Yuan S; Qi L
    Environ Sci Pollut Res Int; 2019 Jul; 26(19):19220-19227. PubMed ID: 31069654
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design of a leaching test framework for coal fly ash accounting for environmental conditions.
    Zandi M; Russell NV
    Environ Monit Assess; 2007 Aug; 131(1-3):509-26. PubMed ID: 17171257
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An assessment of the significance of mercury release from coal fly ash.
    Gustin MS; Ladwig K
    J Air Waste Manag Assoc; 2004 Mar; 54(3):320-30. PubMed ID: 15061613
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catalytic oxidation of gaseous reduced sulfur compounds using coal fly ash.
    Kastner JR; Das KC; Melear ND
    J Hazard Mater; 2002 Nov; 95(1-2):81-90. PubMed ID: 12409240
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recovering unburned carbon from gasification fly ash using saline water.
    Zhang R; Guo F; Xia Y; Tan J; Xing Y; Gui X
    Waste Manag; 2019 Oct; 98():29-36. PubMed ID: 31421487
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Real-Time Cell-Electronic Sensing of Coal Fly Ash Particulate Matter for Toxicity-Based Air Quality Monitoring.
    Moe B; Yuan C; Li J; Du H; Gabos S; Le XC; Li XF
    Chem Res Toxicol; 2016 Jun; 29(6):972-80. PubMed ID: 27124590
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coal beneficiation technology to reduce hazardous heavy metals in fly ash.
    Park H; Wang L; Yun JH
    J Hazard Mater; 2021 Aug; 416():125853. PubMed ID: 34492803
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.