These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

367 related articles for article (PubMed ID: 27230763)

  • 1. Fast and accurate single-cell RNA-seq analysis by clustering of transcript-compatibility counts.
    Ntranos V; Kamath GM; Zhang JM; Pachter L; Tse DN
    Genome Biol; 2016 May; 17(1):112. PubMed ID: 27230763
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A multitask clustering approach for single-cell RNA-seq analysis in Recessive Dystrophic Epidermolysis Bullosa.
    Zhang H; Lee CAA; Li Z; Garbe JR; Eide CR; Petegrosso R; Kuang R; Tolar J
    PLoS Comput Biol; 2018 Apr; 14(4):e1006053. PubMed ID: 29630593
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Current and Future Methods for mRNA Analysis: A Drive Toward Single Molecule Sequencing.
    Bayega A; Fahiminiya S; Oikonomopoulos S; Ragoussis J
    Methods Mol Biol; 2018; 1783():209-241. PubMed ID: 29767365
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Normalization for Single-Cell RNA-Seq Data Analysis.
    Bacher R
    Methods Mol Biol; 2019; 1935():11-23. PubMed ID: 30758817
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SC3: consensus clustering of single-cell RNA-seq data.
    Kiselev VY; Kirschner K; Schaub MT; Andrews T; Yiu A; Chandra T; Natarajan KN; Reik W; Barahona M; Green AR; Hemberg M
    Nat Methods; 2017 May; 14(5):483-486. PubMed ID: 28346451
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single-cell mRNA quantification and differential analysis with Census.
    Qiu X; Hill A; Packer J; Lin D; Ma YA; Trapnell C
    Nat Methods; 2017 Mar; 14(3):309-315. PubMed ID: 28114287
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An accessible, interactive GenePattern Notebook for analysis and exploration of single-cell transcriptomic data.
    Mah CK; Wenzel AT; Juarez EF; Tabor T; Reich MM; Mesirov JP
    F1000Res; 2018; 7():1306. PubMed ID: 31316748
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SAVER: gene expression recovery for single-cell RNA sequencing.
    Huang M; Wang J; Torre E; Dueck H; Shaffer S; Bonasio R; Murray JI; Raj A; Li M; Zhang NR
    Nat Methods; 2018 Jul; 15(7):539-542. PubMed ID: 29941873
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SC3-seq: a method for highly parallel and quantitative measurement of single-cell gene expression.
    Nakamura T; Yabuta Y; Okamoto I; Aramaki S; Yokobayashi S; Kurimoto K; Sekiguchi K; Nakagawa M; Yamamoto T; Saitou M
    Nucleic Acids Res; 2015 May; 43(9):e60. PubMed ID: 25722368
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Data Analysis in Single-Cell Transcriptome Sequencing.
    Gao S
    Methods Mol Biol; 2018; 1754():311-326. PubMed ID: 29536451
    [TBL] [Abstract][Full Text] [Related]  

  • 11. VPAC: Variational projection for accurate clustering of single-cell transcriptomic data.
    Chen S; Hua K; Cui H; Jiang R
    BMC Bioinformatics; 2019 May; 20(Suppl 7):0. PubMed ID: 31074382
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effective detection of variation in single-cell transcriptomes using MATQ-seq.
    Sheng K; Cao W; Niu Y; Deng Q; Zong C
    Nat Methods; 2017 Mar; 14(3):267-270. PubMed ID: 28092691
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single-cell RNA-seq: advances and future challenges.
    Saliba AE; Westermann AJ; Gorski SA; Vogel J
    Nucleic Acids Res; 2014 Aug; 42(14):8845-60. PubMed ID: 25053837
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Normalization and noise reduction for single cell RNA-seq experiments.
    Ding B; Zheng L; Zhu Y; Li N; Jia H; Ai R; Wildberg A; Wang W
    Bioinformatics; 2015 Jul; 31(13):2225-7. PubMed ID: 25717193
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Bayesian mixture model for clustering droplet-based single-cell transcriptomic data from population studies.
    Sun Z; Chen L; Xin H; Jiang Y; Huang Q; Cillo AR; Tabib T; Kolls JK; Bruno TC; Lafyatis R; Vignali DAA; Chen K; Ding Y; Hu M; Chen W
    Nat Commun; 2019 Apr; 10(1):1649. PubMed ID: 30967541
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of innate lymphoid cells in single-cell RNA-Seq data.
    Suffiotti M; Carmona SJ; Jandus C; Gfeller D
    Immunogenetics; 2017 Jul; 69(7):439-450. PubMed ID: 28534222
    [TBL] [Abstract][Full Text] [Related]  

  • 17. scMCA: A Tool to Define Mouse Cell Types Based on Single-Cell Digital Expression.
    Sun H; Zhou Y; Fei L; Chen H; Guo G
    Methods Mol Biol; 2019; 1935():91-96. PubMed ID: 30758821
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cell lineage inference from SNP and scRNA-Seq data.
    Ding J; Lin C; Bar-Joseph Z
    Nucleic Acids Res; 2019 Jun; 47(10):e56. PubMed ID: 30820578
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bias, robustness and scalability in single-cell differential expression analysis.
    Soneson C; Robinson MD
    Nat Methods; 2018 Apr; 15(4):255-261. PubMed ID: 29481549
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deterministic column subset selection for single-cell RNA-Seq.
    McCurdy SR; Ntranos V; Pachter L
    PLoS One; 2019; 14(1):e0210571. PubMed ID: 30682053
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.